Preliminary code design document – 26 February 2003

Authors:

Martin Piper, lead programmer.

Will Hanson, game play and AI programmer.

3D Engine & Tool Chain

Details of what it/they provide

The 3D Engine provides:

Triangle polygons with any combination of the following effects.

Flat shading.

Intensity gouraud shading without dithering.

RGB per vertex gouraud shading without dithering.

Additive alpha transparency with 256 levels. Transparency per polygon is taken from the material alpha setting (0% to 100%). Note this is not the same as an alpha map which has transparency per pixel information.

Texture mapping, non-perspective correct, with any UV ranges per vertex and bill boarding tests. Tiling is supported.

Sub-pixel correction but no edge anti-alias.

Sub-division can be used to avoid texture warping.

Z-Buffering/Z-Sorting.

The engine can also draw on textured sprites with rotation and scale and transparency with mask tests.

Direct to screen access.

Key and joy-pad input.

32 Channel 16KHz mono sound and music.

A 3Dstudio Max (4.2) exporter with character studio can export models and animations to the Argonaut AMF file format.

File import tool converts models and animations from AMF files to files used in the Symbian API.

Performance now and future optimisations

The performance is approximately 1000 textured lit triangles with an average size of 10x10 pixels at 20 frames per second.

Future optimisations include:

Pipeline optimisations to avoid memory and clipping duplication.

Hand optimisation of key routines such as polygon drawing, transformation of points and clipping to 32 bit ARM code.

Scripting Engine

GUI Components – Text Boxes, Pop-ups, Menus etc

Proposed :

A simple text based language that describes the contents of each dialog box and menu. The game code could parse these files and display the necessary windows. Each window/dialog/menu could be referenced by a name and when items are selected/changed the events could be reported to the C++ game code. An XML type format might be perfect for this.

Localisation Concerns

Languages can be stored as text files where each piece of text is referenced by a label. The labels could then be used in the GUI text language. Changing language is then a case of swapping which file to read. Language changes/additions also do not need a code recompile.

We need to implement our own font drawing routines. We need a policy for translating to Chinese scripts – which will probably be okay just rendered left to right as with European scripts - and Arabic scripts - which need to be rendered right to left. Clarify with Nokia on this.

AI

Resource Management Component

Proposed

Resource management is a balancing act that affects the production of various events including money. Certain characters will have a different weighting of how importantly they regard certain things, and perhaps a different weighting of how much favour they have with say the police, for instance one character may have to bribe the police less to achieve the same rate of being busted as another.

At each turn, the computer character will have a given amount to invest in various fields. It will assess their current financial and other situations, and determine after weighting for their personal preferences, which are the priorities for improvement. As a result of scoring the potential areas of attention, the AI can then channel resources into the relevant spheres proportional to its measurement of their importance.

In this way, all the different characters can use the same codebase for their resource management AI, but they will have different weightings files which modify the output of this component. Thus maintaining the character based behaviour in this module.

This AI should be quite quick to evaluate and relatively simple to code.

Risk Component

Proposed

From the perspective of this component, the game is similar to a game of the board game risk in which armies (units) are moved around a large map of territories and battles take place for ownership. The aim of the game being to own all the territories. Main differences are that visibility of enemy units within a sector the AI wishes to invade may be partial or non-existent and that the battles themselves are not resolved through dice throws, but a separate strategy component.

I propose that the AI will for the sake of this component, view the outcomes of a battle probabilistically, which will enable it to evaluate various attacking options. I also propose using a project based AI based on the approach by Baldwin & Rakosky where the AI maintains a list of projects to achieve – conquer a territory, wipe out an enemy unit, defend a territory, and assigns them various weightings, based on various factors, perhaps again including variations between characters. At each turn it will.

1) Examine the domain for possible projects, updating the data on current projects, deleting old projects that no longer apply or have too low a priority to be of value, and initializing new projects that present themselves. For example, we have just spotted a unit threatening one of our territories, we create a new project which is to defend the territories, or if the project already existed, we might have to re-evaluate it and resources required considering the new threat.

2) Walk through all units one at a time, assigning each unit to that project that gives the best incremental value for the unit. Note, that this actually may take an iterative process since assigning/releasing units to a project can actually change the value of assigning other units to a project. Also, some projects may not receive enough resources to accomplish their goal, and may then release those resources previously assigned.

3) Reprocess all units, designing their specific move orders taking into account what Project they are assigned to, and what other units also assigned to the project are planning on doing. Again, this may be an iterative process.

This approach seems quite well suited to the problem of sensible behaviour in the Risk Based Game.

Battle Component

Proposed

For this I see 2 main alternatives.

1. A board evaluation function, using limited look-ahead and mini-maxing as in chess, several other board games. At each turn the available moves are considered and the result of each one evaluated to give a score for the move.

The move with the highest score will be chosen

2. Another project based approach, as the Risk component, in which the AI actively looks for tasks to achieve and tries to set about achieving them.

Both of these approaches could be tailored to provide different behaviours for each computer player, in the first case by changing the weighting on the evaluation function. In the second by perhaps weighting different types of project differently, e.g. some characters may prefer a more attacking project, others a more defensive one.

Multiplayer

Bluetooth

Prerequisites

Solid docs from Nokia would help. However…

In depth testing of the capabilities of the Blue Tooth connection between (up to) four phones needs to be made.

Number of players

Four player games look possible.

Game type supported

A full game from map screen to battles could be supported.

Save game supported

It should be possible to store the game state for all players since the normal game has seven computer players to save the state for. Saves during all stages of the game, except the battle sequence, should be supported.

Each phone can save the game and when the game is continued the saved data can be checked of consistency by using checksums and hashes of the game data.

Over a network

Prerequisites

Solid docs from Nokia would help. However…

In depth testing of the capabilities of the GPRS connection between (up to) two phones needs to be made. Especially bandwidth needs to be considered..

Some sort of lobby server needs to be made concrete before plans for a GPRS network game are implemented. Without a GPRS game lobby server finding a game to join will be very difficult.

Number of players

Due to lag and the fact that GPRS users may find the cost of playing a game and waiting a long time for turns prohibitive it may be necessary to limit the number of players to two.

Game type supported

The turn based nature of the game may mean that the game is limited to one ‘area’ of the map to speed up turns. This shouldn’t be a problem to implement.

Save game supported

It should be possible to store the game state for all players since the normal game has seven computer players to save the state for. Saves during all stages of the game, except the battle sequence, should be supported.

Each phone can save the game and when the game is continued the saved data can be checked for consistency by using checksums and hashes of the game data.

Class Diagrams

See attached Visio document.

