8-Kings Tech Document

Authors:

Martin Piper

Will Hanson

Craig Howard

Mark Inman
8-Kings Technical document

Approval History

	Version
	Date
	Author(s)
	Revision Notes

	1.0
	08/07/03
	C Howard, M Inman, M Piper, W Hanson
	Final Draft

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Contents

6DESIGN – TECHNOLOGY

6Technology concepts

6Introduction

7Program execution

7Base platform Specification

7Supporting tools

8Graphics techniques

8Introduction

83D Rendering

8Model animation

8Coordinate space

9Resources

92D Graphics

10Audio mixer design

10Requirements for mixer

10Mixer design

11Player input

11The input API specification

12Platform specific implementation issues for the N-Gage

12Processor

12OS

12Memory

12Display resolution

12Sound

13Player input

13Network

14Performance now and future optimisations

15DESIGN – SUBSYSTEMS

15Subsystem design

16AI design considerations

19UI design considerations

20Data files considerations

21Multiplayer design considerations

22Localisation design

23Game and map editor

26External libraries

26Sound system

26Graphics system

26Connectivity

27Tools and software

27List of tools needed

28Programming related risks

29PROJECT MANAGEMENT

29PROJECT INTRODUCTION

30Project overview

31Project Objectives

32Actual Objectives

33PROJECT SCOPE

36PROJECT ORGANIZATION

37PROJECT FOLLOW UP

38Work plan Review and Update Procedure

40Issues Management Procedure

41PROJECT EFFORT, COST AND DURATION

41Project effort

42Project cost

43Project duration & milestone value

44Project assumptions

46Schedule-assumptions

47Cost-assumptions

48CHANGE MANAGEMENT PLAN

50RISK MANAGEMENT

50Introduction

51Graphics related risks

51Technical Feasibility

52Design related risks

52Tutorial

53Programming related risks

544 Player Bluetooth

55Communication Management plan

55Purpose

55Aim

55Stakeholder Management

55Project Stakeholders

55Frequency of Information

56Project Team

56Relationships with other departments

56Reporting Process

57DOCUMENT MANAGEMENT & VERSION MANAGEMENT

58QUALITY MANAGEMENT PLAN AND ACCEPTANCE PROCEDURES

59Main QA processes

59General Q&A and acceptance process

59Pre-Alpha

59Alpha

59Beta

60Master

60Quality Tools

61Quality Assurance

61QA in programming

61QA reviews in programming

61Quality Assurance Roles and Responsibilities:

63Technical Appendix

638-Kings Class Documentation

64GameAPI Class Reference

68BTContainerService Class Reference

69ContainedExample Class Reference

72FileSystem Class Reference

73XPCompression Class Reference

74TiledBackground Class Reference

77Cursor Class Reference

79GameObject Class Reference

DESIGN – TECHNOLOGY

Technology concepts

Introduction

The game is being programmed for the Nokia n-gage mobile phone game deck. The actual code for the game is split in to two parts containing the engine and the game logic.

The game engine controls access to the target platform, the n-gage in this case, and also controls sound, music, screen display, input and access to a network data packets. The game engine provides a cross platform base specification for the game logic to interface with.

The game logic code is what makes 8-Kings play like 8-Kings. The game logic code includes things like the AI, map drawing, player control logic and user interface.

The game logic code also interfaces with a game editor specifically designed to facilitate the games designer to create maps and levels for the game logic to use.

Program execution

An initial application boot-up with access to a stack and an entry point “hook” for the application.

Base platform Specification

The base platform specification is assumed to be a processor capable of 32 bit memory access (aligned) with integer add and multiply maths operation without floating point. The smallest memory size can be as low as 256K of useable RAM.

A compressed file system is also provided to allow data files to be squeeze as small as possible on a target device. This also helps to add a layer of protection, as the compressed files are harder to read than normal plain binary files.

Direct to screen access with a minimum resolution of 176x208 pixels and 12-bit colour using a standard two bytes per pixel arrangement.

Key and joy-pad input with at least two simultaneous keys held down.

32 Channel 16KHz mono sound and music.

Network data packets assuming a minimum size of 576 bytes for a reliable packet. The network on the device could be Bluetooth, GPRS or some other packet based protocol.

Supporting tools

A 3Dstudio Max (5.1) exporter with character studio can export models and animations to the Argonaut AMF file format.

File import tools convert models and animations from AMF files to files used by the engine.

Sample and music conversion.

File compression.

Graphics techniques

Introduction

The GameAPI class provides 3D and 2D rendering.

3D Rendering

Triangle polygons with any combination of the following effects:

Flat shading.

Intensity gouraud shading without dithering.

RGB per vertex gouraud shading without dithering.

Additive alpha transparency with 256 levels. Transparency per polygon is taken from the material alpha setting (0% to 100%). Note this is not the same as an alpha map which has transparency per pixel information.

Texture mapping, non-perspective correct, with any UV ranges per vertex and bill boarding tests. Tiling is supported.

Sub-pixel correction but no edge anti-alias.

Sub-division can be used to avoid texture warping.

Z-Buffering/Z-Sorting.

The engine can also draw textured sprites with rotation and scale and transparency with mask tests.

Model animation

3D Models can be deformed using a weighted skinning animation system. This provides very realistic movement straight from 3D Studio Max that can be replayed in game. This technique is used on many modern games.

Coordinate space

A matrix hierarchy is provided to allow complex movement of models to be calculated and accumulated.

Resources

Internally resources for textures, materials and models are managed and can be dynamically loaded and removed from memory when needed.

2D Graphics

A “Blitter” API allows graphics to be drawn and manipulated with various image and colour processing effects to provide a good variation of on screen effects.

Audio mixer design

Requirements for mixer

The sound API requires a base specification of at least one PCM sampled 8bit stream. Using this the main music and sound effect manager can combine channels in to the stream.

Mixer design

The sound manager can mix:

32 Channel music using an existing format of music known as MOD/XM files.

32 Channel sound effect channels, multiplexed with the music channels, and using samples with variable pitch offsets.

The MOD/XM files allow music to be composed using samples and were first used by the Amiga home computer in the 1980’s.

The format is particularly suited to machines with small (compared to modern PC’s and consoles) memory footprints. The sampled nature of the sounds reduces the CPU time needed to render complex waveforms. The format is well known and many public domain tools exist that allow easy editing of MOD/XM files.

Lastly the sampled sounds often sound better than sounds produced by simple CPU calculated waveforms.

Player input

The input API specification

Multiple key press event detection.

At least 2 simultaneous key press events.

Platform specific implementation issues for the N-Gage

Processor

The n-gage uses a 32-bit 100MHz ARM 9 integer RISC processor. The instruction set can use 32-bit or 16-bit (thumb) instructions. There is no processor instruction or data cache.

OS

The OS is a revision of Symbian Series 60. This platform uses a pre-emptive multi-tasking GUI.

Memory

The total amount of useable RAM for the application is approximately 6.2Mb. Storage is provided by means on a memory card providing approximately 16-32Mb of data space.

Display resolution

The screen resolution is 176x208 pixels using a bit depth of 4 bits per colour channel per pixel and 4 bits of unused data making a total of 16 bits per pixel. Drawing to the screen is accomplished by opening a Symbian GUI full screen window using the GUI Window server interface. A bitmap image can then be drawn to this window. Doing this allows the normal phone application windows to appear in front of the game display, if needed, to allow phone calls to be answered.

Sound

Sound is provided by the Symbian OS and comes in the form of a 16KHz single channel mono data stream. The engine mixes the 32-channel sound from the music and sound effects manager in to a single channel sampled stream ready to be sent to the n-gage media manager as small chunks of data.

Player input

The Symbian GUI already provides an event driven key input system. It can be persuaded to produce multiple key events by sending an undocumented, but valid, event to the window server. The key scan codes needed conversion to the API internal values.

Network

Bluetooth and GPRS are used by the mobile phone. The network API transparently allows data packets to be sent and the relevant work is done to send these packets using the preferred protocol. We intend to use Bluetooth connectivity for the game.

Performance now and future optimisations

Using a 100MHz ARM 9 Nokia n-gage the performance is approximately 1000 textured lit triangles with an average size of 10x10 pixels at 20 frames per second.

Future optimisations include:

Pipeline optimisations to avoid memory and clipping duplication.

Hand optimisation of key routines such as polygon drawing, transformation of points and clipping to common target CPUs such as 32 bit ARM code.

On platforms with extra memory, such as the Nokia n-gage, memory can be used for lookup tables to speed up maths operations and coloured pixel manipulation.

DESIGN – SUBSYSTEMS

Subsystem design

Subsystem list

· Game code

· Game data

· 2D Graphics

· Fonts

· 3D Models and animations

· Map data

· Computer AI

· Game loading and saving

· GameAPI

· Screen display

· Render 2D graphics

· Render 3D graphics

· Audio mixing

· Player input

· Network packets

· Game and map editor

· Max model conversion

· File compression

AI design considerations

There are several possible approaches to the AI, each with its characteristic advantages and disadvantages. The major ones are detailed below.

Project Based

In this approach the AI attempts to reason like a human player. From turn to turn, the AI will keep a track of it’s current overall objectives, for example, destroying all enemy units, and a list of sub-goals with various priorities. For example capturing an area of the map, destroying an enemy medium tank.

The AI can assign units to each of these projects, based upon how effectively each unit can assist in carrying out the priority, and how important the project is. There would be, for example, little point in removing a valuable unit from a valuable project to accomplish a large part of a very low project action.

Once units are assigned to projects, the AI will then step through each unit and decide the specific course of action for it, to best achieve the aims of the project.

The advantages of this method are that it should produce a reasonably human style of play, based as it is on human devised strategies. It should also be quick to execute and relatively lightweight in terms of memory requirements.

The disadvantages are that the human style of play will inevitably mirror some of the development team’s own play preferences, along with their tactical weaknesses. Additionally it is hard to generate a set of strategies that cover ALL game scenarios and do not occasionally leave the AI floundering with an unwise set of projects.

Board Evaluator

In this approach, we would devise a series of measures of success about a given game. For example, how many total health points do I have. The AI can then look at any board instance and produce a score of desirability based on some top-level goals, for example, destroy ten enemy units to win the map.

We can then generate each possible move for each unit, inflict it onto a copy of the current map, and generate a score for the move. We can then subsequently test all the return moves the AI’s enemy could make from all the generated map positions, scoring all these generated boards. At this stage we would probably have to pick the move that maximises our score after the enemy has retaliated. In some games like chess it is possible to look much further ahead than this, but in 8 Kings there are potentially dozens, not just 5 or 6 moves to choose from at each turn, as each unit (of which there may be 10+) could have 10+ moves available to it. Even with 10 units, making one of potentially 10 moves each at each turn, and disregarding the order in which the units are moved, we would have 10000 boards to consider after 2-ply look-ahead. To look to the next stage (the map state after the AI’s subsequent move) would require examining 1000000 moves. Clearly this move tree grows far too quickly. It would be possible to prune the tree after each stage perhaps, but still we are looking at a lot of moves.

The advantages of this approach are that we could decide only the components of the scoring function, then set the AI to play thousands upon thousands of games against itself, adjusting the weightings after each game. This would produce an AI potentially with performance far in excess of the project based AI.

Disadvantages are the amount of processor and memory the AI could require to operate, the time it would require to train the AI, and the fact that it may not play in a very human way. It could take the AI several seconds to evaluate all of the potential moves available to it, especially with other graphical tasks going on as well.

Conclusion

In conclusion it seems that the project based AI will probably be best suited to 8 Kings. It can be quickly prototyped, without the need for lengthy training sessions, although it might be possible to use a learnt weighting for its different projects once generated. Additionally whilst it may make some tactical mistakes, it is felt that it will be possible to make an AI which plays a sensible game in most circumstances and users will be more comfortable playing against an opponent who has a reasonably predictable, human-esque style of play, rather than a purely scored approach which may make moves that although unlikely to cause detriment to the AI’s team, are not particularly engaging to play against. Given the relatively short development time available we consider it best to opt for the project based AI which can be progressively honed throughout the course of the development period.

UI design considerations

As a result of feedback to the prototype versions so far developed, we will be making some changes to the UI in game. Amongst these changes are

Improvement of the cursor graphic

Correctly implement highlighting of tiles to show possible moves. In future we will tint the textures of the models themselves rather than simply drawing a flat layer of semi-transparent 2D tiles on top of the 3D rendered layer.

When a piece is selected and its possible movement squares are highlighted, if the user moves the cursor across this region quickly, when the cursor reaches the edge of the region, it will stop and wait until the D-Pad is released and repressed.

The area of the map highlighted by the cursor to show available moves will highlight in the team colours of the current player, rather than the current default red / white. The cursor will also change colour as the player changes.

Data files considerations

A game like 8 Kings generates a substantial amount of configurable data, from units, and their behaviours, through the tiles, and the text to associate with each unit and tiles.

To enable artists and designers to be able to tweak the interactions between units, their movement capabilities, representative models and associated text without input from the development team, we are using CSV files editable in Microsoft Excel.

These CSV files allow artists to substitute different model files for units and tiles and designers to edit in game characteristics of units and tiles. We are using these as the loader code was very quick to implement and yet they can also be edited easily in the graphical environment of Excel. They also allow changes to be made without the need for a code recompile.

Multiplayer design considerations

To facilitate the addition of the Bluetooth multiplayer games we have encapsulated the actions a player can perform in the Battle Screen into an Action class. These Actions can then be inflicted onto a map, either locally as in a one player or multiplayer hot-seat game, or serialized, sent over a bluetooth connection, reconstructed at the other end, and inflicted on the remote device.

This means that as far as the client is concerned, it maintains an Action queue, which it polls for new actions to inflict on the map. Actions can be supplied either from direct local input, a bluetooth network connection and most of the game logic need not know the difference between these.

As far as current code is concerned, it can handle players being chosen from a menu manually (or a more elaborate lobby if we decide to do it). This need not concern the game-logic, as far as it is concerned, it has a list of players, who must first synchronize their map representations, and then maintain synchronisation by communicating changes made on each handset to each other, directly in the bluetooth connection.

Localisation design

Games consoles and mobile phones are sold in global markets and to people speaking many dozens of different languages in many different scripts. We have taken this into consideration from the beginning of our development.

All in game text is held in Unicode format text resources, outside of the source code, and loaded in at runtime. Thus when sending a game for translation we can send only the text resource files, and theoretically need not recompile our code to produce a new skew.

Fonts are drawn using our own graphical font system, allowing us to create a visually attractive font at small sizes. This font contains a descriptor detailing what characters it can render, again in Unicode. When building a new language version we need to know only the Unicode characters held in the translated text resources for that version and then to draw any additional characters required for the translated version. We will be producing a tool to strip out from our master font graphic, any characters not required by a particular language version. This will be done by reading in the entire language resource for that version of the game and removing from the graphic those characters not used.

We will not be supporting right-to-left render order for Arabic text and we plan to render Chinese text left-to-right and top-to-bottom, not the traditional top-to-bottom, left-to-right order. With Chinese text we believe it is going to be impossible to get an attractive font drawn in less than 12x12 pixels, so all text dialogs in our game will have to scale up for a different sized font.

Our goal is to remove the need for most if not all developer input when producing a translation of the game for overseas N-Gage users. We will do this by creating script files and tools to rebuild our text resource files and font files.

It is possible that for Chinese text we may want to generate many of the required characters from an existing font rather than getting an artist to draw them all from scratch.

Game and map editor

The editor has been written using Microsoft Foundation Classes for the PC. This provides a windows GUI application that allows map tiles and units to be places by the game designer to produce maps for the game.

[image: image1.png]
Standard operations for loading/saving, cut and paste can be used.

[image: image2.png]
Teams colours for map tiles and units can also be edited to allow a wide variety of game maps to be created.

[image: image3.png]
External libraries

Sound system

The GameAPI audio mixer uses mediaclientaudiostream.lib

Graphics system

The GameAPI audio mixer uses the window server.

Connectivity

The GameAPI uses the standard Bluetooth.lib and esock.lib.

Tools and software

List of tools needed

Max 5.1

Microsoft Visual Studio 6.0 or dotNET.

Windows 2000
Photoshop

Programming related risks

The initial 8-Kings application tests used approximately 2.8Mb of RAM during the most intensive part of the execution cycle. This is more than a PS1 game however this is to be expected since we cannot use palette compressed textures and maintain rendering speed. Also some of the graphical techniques used in the game are above what would normally be used in a PS1 game.

An estimate of 10Mb of free RAM would be suitable for the final game. The extra memory would be used for extra graphics and sound data. The engine can also use large lookup tables to accelerate graphics calculation and rendering.

The current space used by the installed files on the phone is 1.24Mb. These files are heavily compressed and are decompressed at load time in to the phone memory. An estimate of 8Mb would be the minimum amount of data needed to contain the whole game with a possibility of reducing graphics and sound effects used. A figure of 16Mb of data would be a reasonable target to make sure all of the designed graphics and sound could be included and to ensure a full game experience.

Tests of Bluetooth have shown no appreciable latency issues and the engine network service seems to cope with data being transmitted using this medium.

PROJECT MANAGEMENT

PROJECT INTRODUCTION

8-Kings is a strategy game developed solely for the Nokia N-Gage platform.

The game is themed in a comic-book world. This ensures that it can carry across strong styling and characterisation to ensure that the I.P. can be aggressively pitched in the marketing due to strong images.

The game allows a user to create an individual Gangster profile. They then can take this character on an underhand campaign to become the King of Chicago.

The game however takes the scenario further thanks to the multiplayer functionality. The player can play other players over Bluetooth. This coupled with the innovative game designs will allow a wide range of user retention as they aim to become the kings of the virtual domain.

Project overview

Our Model

The model for this project is an “Immersive gaming experience, which will utilise the features of the N-Gage mobile device (Developed by Nokia).”

Requirements
The game must make advantage of the unique features of the N-Gage. These are the multi-player possibilities of Bluetooth networking.

The game must be an original concept to ensure that it is a fresh and interesting product.

Purpose of Project

8-Kings has been developed to provide the publisher with a product that they will market to the general public. It will be bespoke in its design and scope to ensure the highest possible N-Gage functionality.

Project objectives

· Cutting-edge game play

· Not to adhere to conventional design ideas, but to explore the possibilities presented by the N-Gage platform.

· Plan, design, document the processes involved with producing the game.

· Involve the publisher throughout the project and create a communication network that supports open, honest, and two-way communication.

· Understand the scope and technology available with writing a game for the N-Gage console.

Project Objectives

The Objectives for the project are:

Overall team design objectives

The following objectives are guidelines for the development team. They are the goals that we considered when developing the game design.

I.P. development. 8-Kings intends to be a project that will become synonymous with the N-gage. The game has been developed to appeal to the initial demographic range projected by N-Gage marketing. (Adult gamers with disposable income). However it has also been developed to ensure interested from the other key demographics (Hardcore Gamer, 1st time user)

Innovative design. Innovative design has allowed the game to develop into game that can be played both offline and online (Bluetooth). The online element is the real battleground for the user. This is where they can use their skills that have been developed in the offline game to great effect to beat other real-life players.

Retention of player. The game allows you to develop a profile and to take on a wide range of enemy maps to become the king of Nu Chicago. The player can then take on other players in multiplayer and will be able to increase their ranking.

Multiplayer Games. The game will allow up to 4 player Bluetooth functionality, also it can be played with a combination of hot seat and Bluetooth systems to ensure the maximum multiplayer fun and availability.

Actual Objectives

The actual project objectives are the actual tangible deliveries that we will deliver. The S.M.A.R.T objectives are

Preview Version. This deliverable is a refined version of the game that will allow you to play the one player game (Not multiplayer). The quality of this game will be at a high enough standard to allow external previews to be made of the game. This will entail that the game contains some final quality art. However optimisations and Bugs will still be evident (although all effort will be maintained to ensure that these have minimum effect on the build).

Alpha. This version of the game will have all assets included in the game. They may not be of final quality however their functionality must be implemented. There will be bugs, final pass art refinements and changes still made to the game AI. However the Alpha submission will give a glimpse towards the final pass of the game.

Beta. The Beta submission will have final Art quality assets, and will be a complete game.

Full Submission Candidate. Full submission candidate is a version that is 100% complete. It may contain Bugs
Gold Master Candidate. Gold master candidate is when the game has been bug-fixed and is deemed ready for release.
PROJECT SCOPE

The Team will develop a game for the N-Gage platform. It will conduct a study of potential gameplay elements and will utilise them in the most effective manor to create a game title that plays up to the strengths of the N-Gage platform. The product will be functional and ready for submission in 2003

The key components for the final delivery will be:

Full gameplay implemented

Multiplayer functionality

Zero Class A Bugs

In scope

Gameplay code the team will deliver code that will work with the Morpheme game engine to provide the playability and game logic needed to produce 8-Kings.

One player Campaign game

One to Four player Hot seat game

One to four player Bluetooth game

Out of scope

Additional content for downloads (This is open for negotiation)

Marketing the product

Managing project scope changes

From time to time there may be requests for new elements to be added to the game, or changes to the product that will affect the overall project scope.

These changes have the largest potential in affecting final dates and costs of a project. It must be remembered that most changes in scope will need reductions in other areas to compensate unless extra funding for resources is given.

Scope Management Procedure

Recommendations for potential scope changes can be made by any of the people involved in the project. Including the project team, The publisher or QA. The issue can surface through verbal or written means, but it will be formally documented using a Scope Change Request Form.

The request will be entered into the Scope Change Log. This is an Excel Sheet. It has the Scope request, estimated time cost and recommended solutions and actual solutions.

The scope change will have to be investigated by Craig Howard (8-kings Producer). The impact on budget and schedule will be considered for various viable options. Craig Howard will first determine how much time it will take to investigate the scope change request. If the time required to perform the analysis will cause deliverable dates to slip (R & D time etc), the request must first be taken to the publisher to determine whether the request should be investigated or not.

If the publisher gives the initial approval to proceed, the work plan and budget may need to be updated to reflect this new work. The options for the scope change are documented on the Scope Change Request Form*. If the publisher does not agree to investigate the change request, then the request should be placed closed as 'not approved' on the Scope Change Log.

*The Scope Change Request Form contains a reference to the scope log and the recommended changes.

Take the scope change request, alternatives and project impact on the Scope Change Request Form to the publisher for a resolution.

There may be scope issues that are very small and will not threaten the overall project lifecycle or costs. In this case the producer (Craig Howard), and external producer (Mark Inman), may approve the scope change request.

The purpose of this is to keep from surfacing many small changes to the publisher for approval.

Document the resolution or course of action on the Scope Change Request Form.

Document the resolution briefly on the Scope Change Log. If the publisher does not agree to the change request, then the request should be closed as 'not approved' on the Scope Change Log.

If the resolution is agreed upon, the appropriate activities are added to the work plan to ensure the change is implemented. The project budget should also be updated, if necessary.

If an approved scope change results in a substantial change to the project, the original Project Definition should be updated.
Craig Howard will communicate issue status and resolutions to project team members through a personal meeting. The publisher will be informed through the Manage Communication process, including the Project Status Report.
PROJECT ORGANIZATION

8-Kings Org chart

[image: image4.png]
PROJECT FOLLOW UP

Upon completion of the 8-Kings project to the agreed milestone delivery of a Gold master Candidate, and before disbanding the project team. Discussions are organized by the external producer at Morpheme with the projects producer at the publisher to review the project’s achievements and results, to identify pending issues, to agree on immediate follow-up action, and to examine the need and the potential for future projects, both sequels and new I.P.

The completion of the 8-Kings project team activities is sanctioned by achieving the acceptance for the Gold Master submission.

A full backup of the code will be given, alongside documentation for building the product with the supplied entities.

Additional follow-up may be needed due to the amount of responsibilities apportioned to Morpheme for extra content for the online component.

Work plan Review and Update Procedure

Review the work plan on a regular basis.

This is a weekly process when the team as a whole meet up and discus the current progress and any potential issues that they foresee, or any dependencies that are becoming a priority.

Capture and update tasks achieved.

The review will identify activities that have been completed during the previous time period and update the work plan to show they are finished.

Reviewing the schedule situation. We will determine whether there are any other activities that should be completed, but are not. This will be evident from the list of required tasks in the schedule. If there are activities that are late, the individual(s) assigned to the tasks will be notified and management will endeavour to rectify the situation with those individuals.

Reschedule the project.

After the work plan has been updated to show the current reality, it will be re-scheduled to see if the project will be completed within the original effort, cost and duration defined.

Run additional work plan management reports.

The main critical path will need to be reviewed and considered once re-scheduling has taken place. Also the amount of resource allocation will need to be addressed.

Review the budget situation.

The revised project schedule will be checked against the budgeted costs. It is important to realise that the project will only have a fixed amount of resources due to the allocated budget. If the schedule is over budget, lower priority tasks will need to be cut or reduced in scope to bring the costs back into line.

Evaluate the critical path of the project.

Adjust the work plan.

After these reviews and re-scheduling the new list of weekly tasks will be sent to the team.

Communicate any schedule and budget risk.

As soon as there is a risk of missing a deadline or tasks going over budget, this will be communicated to the publisher to ensure maximum visibility for the situation. This will then ensure procedures to minimise disruption will be taken at the earliest possible date.

Add more details to future work. On a regular basis the future tasks will be adjusted to reflect any additional information that is available. This will allow a more granular level of accountability from the schedule as the development proceeds.

Issues Management Procedure

When potential issues are raised from people involved with the project, such as the project team, the publisher or QA. The issue can be surfaced through verbal or written means, but it must be formally documented using an Issues Form.

Enter the issue into the Issues Log.

The Issues Log is an Excel spreadsheet. It contains the following headings. Issue, Assigned, Priority, Resolved Solution, and Estimated time.

When an issue has been entered in the log, it will be assigned to the producer for investigation. The producer will investigate options that are available to resolve the issue. For each option, they should also estimate the impact to the project in terms of budget, schedule and scope.

The various alternatives and impact on schedule and budget are documented on the Issues Form. Craig Howard will then take the issue, alternatives and project impact conclusions from the Issues Form to Mark Inman or if needed, the publisher for a resolution.

If resolving the issue will involve changing the scope of the project, close the issue now and use the scope change management procedures instead to manage the resolution.

Document the resolution or course of action on the Issues Form.

Document the issue resolution briefly on the Issues Log.

Craig Howard will make the appropriate adjustments to the work plan and project budget, if necessary.

Craig Howard will communicate issue status and resolutions to project team members through a personal meeting. The publisher will be informed through the Project Status Report.
PROJECT EFFORT, COST AND DURATION

Project effort

Will be included on completion of contract negotiations.

Project cost

Will be included on completion of contract negotiations.

Project duration & milestone value
The 8 kings project has been in full development since February 2003. The initial design had been developed in October 2002, and there were levels of pre-production and tool refinements made in between that time.

The remaining dates for deliveries are as follows.

	MILESTONE
	DATE
	DELIVERABLES

	Milestone 1

	08 / 08 / 2003
	Alpha

	Milestone 2

	26 / 09 / 2003
	Beta

	Milestone 3

	10 / 10 / 2003
	Submission Candidate

	Milestone 4

	17 / 10 / 2003
	Gold master Candidate

Project assumptions

In order to identify and estimate the required tasks and timing for the project, certain assumptions and premises need to be made. Based on the current knowledge today, the project assumptions are listed below.

If an assumption proves to be invalid at a later date then the activities and estimates in the scheduled tasks will need should be adjusted accordingly.

· Assumption 1. The publisher will provide us with the full SDK for N-Gage development.

· Assumption 2. We will have full support with technical issues from Nokia tech support.

· Assumption 3. We are working with the premise of developing the game for a 16mb Cartridge as a Minimum size.

· Assumption 4. Copy-projection will be a hardware solution provided by Nokia.

· Assumption 5. Morpheme will not be held accountable for faults or problems that arise from misuse of its supplied product.

Results / quality-assumptions.

· Assumption 1.The final product will be a playable game that will allow the player to have battles.

· Assumption 2. The game will not have any bugs that will halt the play experience from ever reaching the end.

· Assumption 3. There is no way to stop hostility in multiplayer modes from affecting other player’s game. Design will be implemented to try to reduce this but this is ultimately a consequence of the scenario.

· Assumption 4. Adequate QA support is provided from the publisher’s QA over the period of the development phase.

· Assumption 5. Submissions/Resubmissions testing phase takes no longer than 10 days from day of submission to completion of testing.

· Assumption 6. The publisher QA is responsible for the composition of QA tools they will use within testing.

· Assumption 7. Should the publisher require the developers Internal QA to use the same bug reporting database, they will provide installation and instruction on its use.
Schedule-assumptions

· Assumption 1. A workday is 7.5 hrs

· Assumption 2. A workweek is 37.5 hrs

· Assumption 3. Each employee will have 20 days Holiday that they will be able to book when they wish (Although they will need to make consideration, of likely milestone deliveries and consult the Producer for an agreed date).

· Assumption 4. Each employee will not work on bank holidays.

·
Cost-assumptions

Will be included on completion of contract negotiations.

CHANGE MANAGEMENT PLAN

Change Management Plan Purpose

The purpose of the 8-Kings Change Management Plan is to coordinate changes across the entire project. The plan will address how the 8-Kings project will ensure that the changes are beneficial, determine how the change will occur, and manage the changes as they occur.

It is assumed that a request for change may occur in several forms such as oral or written, direct or indirect, externally or internally initiated, and legally mandated or optional.

Change Management Goals

The goals of the 8-Kings Change Management Plan:

Reasonable change activities are planned.

Changes are identified, defined, evaluated, approved and tracked through completion.

Project plans are changed to reflect the requested changes.

Changes are negotiated and communicated to all affected parties.

Change Management Responsibilities

The change management responsibilities are:

The 8-Kings project is responsible to develop the Change Management Plan.

The producer is responsible for ensuring that changes are delivered as planned.

Records of changes are tracked and maintained.

The change management activities will be reviewed with senior management on a periodic basis.

Overall Change Management Model

The Producer (Craig Howard), will be assigned and have full responsibility for facilitating or executing the change management process to officially provide new requirements, scope, schedule and resources as follows:

Identify a change -document and log a change request.

Evaluate a change - analyze changes to the project plan, project or activities, and changes to project time and effort estimates.

Assess for risk - assess impact or risk of change to the project.

Obtain change decision - propose or recommend the change solution, obtain approval, rejection, or rework and negotiate agreements on schedule and effort commitments of all affected parties.

Integrate changes into project plan - update the project plan, estimates, and schedule. Communicate the final changes to commitments or assignments to all affected parties, and obtain approval of the updated project plan and schedule.

Scope Change/Requirements Management

The Requirement Management Plan will be used to define and manage the product scope of the project in support of and consistent with the project objectives throughout the life of the project. It details the process, assigns responsibilities and identifies the techniques to be used, associated tools, and documentation needs.

In summary the plan for Requirements Management is to:

Identify stakeholders and gather, validate, prioritise, and document stakeholder needs and constraints.

Transform needs into high-level requirements, evaluate and correct deficiencies, validate findings with stakeholders and finalise requirements.

Assign and categorise the high-level requirements to products, refine the high-level requirements to obtain greater precision and detail, and validate that the detailed requirements align with the high-level requirements.

Verify through each phase of the project that the end product or deliverable meets the requirements specifications, i.e. the code meets the design specification.

Use the project’s change management process to manage deletions, modifications and additions to stay in line with the original objectives or to formally modify these objectives, and the supporting schedule and resources.

RISK MANAGEMENT

Introduction

The project risks that have been isolated in this document are those features or circumstances that may have an adverse effect on the project or the quality of its deliverables. Known risks identified with this project have been included below. A plan will be put into place to minimize or eliminate the impact of each risk to the project.

The risks assessments are broken down into the three main production areas. Graphics, Design and Code.

Graphics related risks

	Risk Area
	Level

(H,M,L)
	Risk Plan

	To get a sufficient level of graphical detail on the phone.

	H
	To look at the available memory and work out how much is available for graphics.

To refine an Art style, (This is the current task of the Art team).

To have an Art document explaining the choices and decisions to ensure the team has the same idea.

	To make units on the battle map easily identifiable.

	H
	To refine the design of the Units to make the profiles more unique.

To add more contrast and outlines to the objects.

	To easily identify the units that, have been moved.

	H
	To ensure that objects change their behaviour after being moved.

To dim the graphic.

	To display a unit on a building

	M
	There will be times when a Unit is on top of a building. We will try to ensure that this does not obscure too much of the playing area as it is tall.

Look at lowering the tallest buildings.

Look at semi-transparency.

Decide on the best solution and pursue it.

	Technical Feasibility
	H
	To ensure that the graphics reach a compromise with the engine to ensure the game runs at a sufficient rate.

To work with the Code team to be aware to the technical constraints of the engine.

To ensure that the polygon count is not unnecessarily high for the objects in the game.

To ensure that the sorting of polygons is kept to a minimum.

Design related risks

	Risk Area
	Level

(H,M,L)
	Risk Plan

	Tutorial

	H
	It is very important that the player learns the game quickly. To do this we need to ensure the tutorial system is well implemented.

To focus test the design on a range of users.

To revise the Tutorial after extracting the useful information from the test.

	Difficulty Curve

	H
	The progression of the game needs to be gradual enough for the player to keep learning new tricks and also to be challenged.

To have a selection of different players play through the game and mark down the difficulty of each map out of a score.

To ensure that the designers / production team have external testing to ensure that the difficulty is not too high. (This is a common problem with games that are tested internally).

	Multiplayer game types.

	H
	Due to the turn based nature of the game, multiplayer games can be very long. This is not desirable for certain scenarios for the player. Hence various game-types will be conceived to offer shorter game experiences.

Programming related risks

	Risk Area
	Level

(H,M,L)
	Risk Plan

	Copy protection
	H
	Nokia will need to supply a form of hardware copy protection to ensure that the game cannot be easily copied.

	Language Support

	M
	The game will have multi-language support. We need to ensure compatibility with these languages.

The publisher to provide a list of the desired languages to be supported in the game.

To test exceptional cases in the font routine.

	Engine optimisation

	M
	We will endeavour to get the game running as fast as possible on the N-gage hardware. The Solutions for this is as follows.

To ensure scheduled time for engine optimisations.

To ensure that we have the full SDK available when writing the game.

To have full access to Nokia technical support with technical issues.

To ensure compromise with the Artistic detail of the game to ensure a compromise of speed and graphical detail.

	A.I.
	M
	The A.I. is the heart of the gameplay. For this reason alone it needs to be considered a risk. The solutions for this are as follows.

To ensure sufficient scheduled time for the AI programming.

To ensure that that game is tested a suitable stages throughout the development cycle to ensure that it is working fully.

	4 Player Bluetooth
	H
	The Bluetooth functionality of the N-gage is excellent. However there are bugs with the current library. We are unable at the moment to get 4-player Bluetooth functionality working at the moment.

Ensure a test case is submitted to Nokia technical support.

Communication Management plan

Communication is vital to the success of the 8-Kings project. This is why the communication management plan was devised.

Purpose

The purpose of the ‘communication management plan’ (CMP) is to inform project Stakeholders of the current project status.

Aim

The CMP aims to provide the information and communication needs of the

Stakeholders.

Stakeholder Management

The key relationships to manage are those with the main project stakeholders. (Whilst this is not a definitive list, these are the stakeholders who have been identified at this stage.

Project Stakeholders

The publisher
Morpheme Management (Matt Spall, Lucy Reed)

Morpheme External Producer (Mark Inman)

Internal Producer (Craig Howard)

Project Team

The above list will be managed throughout the project, and may be expanded.
Frequency of Information

The frequency of reports will be arranged to ensure that everyone is always knowledgeable of the progress and issues relating to the project. This is something that will have to be provided from the development side, and that of the Sponsor.

Project Team

The project team will be responsible for correspondence with their direct managers (Mark Inman, Craig Howard) for scheduling issues and conducting meetings, setting agendas and producing current status and progress reports that will be sent to the project sponsor and project stakeholders.

The project team consists of Will Hanson, Martin Piper, Steven Taylor, Stuart Scott, Oscar Ferraro and Douglas Hickmore.

Relationships with other departments

There are a few external departments that will have an impact on the development of the 8-Kings project. These are QA, Marketing and also magazine correspondence. When these departments become more involved with the project it is possible that new reports will need to be generated.

Reporting Process

A suggested method of reporting is described in the following table. These are the initial reports, however these are always subject to review.

	Audience
	Information type
	Schedule
	Delivery method
	Responsibility

	The publisher
	Status Report
	Bi-Weekly
	Email
	Morpheme External Producer,

Internal Producer

	Internal producer
	Team meetings
	Weekly
	Verbal
	Project team

	Internal Production

	Publisher Activity
	Monthly
	Email
	The publisher

	Internal production

	Bug reports
	Requested as scheduled
	Email
	QA (external)

All documentation belonging to the project will be kept in a project folder with the Morpheme Project Manager (Mark Inman). An electronic copy of all the documentation will also be kept on the internal server.

DOCUMENT MANAGEMENT & VERSION MANAGEMENT

This template is used to keep track of important documents that will be updated a number of times during its lifetime.

The original document creation is called version 1.0. After that, subsequent updates will be 2.0, 3.0, etc. Incremental versions will be 1.1, 1.2, 1.3, etc.

The following table will be inserted at the front of the key documents to ensure the changes are well documented.

Approval History

	Version
	Date
	Author(s)
	Revision Notes

	1.0
	
	(Original author)
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

QUALITY MANAGEMENT PLAN AND ACCEPTANCE PROCEDURES

Main QA processes

General Q&A and acceptance process

Pre-Alpha

QA involvement prior to Alpha can be useful, apart from the obvious support on bug finding (which at this stage is less of a concern), QA support can take the form of design feedback and gameplay balancing. Although all major gameplay changes are a development call, QA support can be useful in that their detachment from a project can help iron out gameplay flaws.

Alpha

The whole process allows QA access to the code to assess the various areas of the game and make a judgement, with the support of the various members of the development team, on what the target for the game should be at alpha. An Alpha Checklist is then drawn up based on discussion between Development and QA and this can take on a couple of approaches:

· An agreed list of deliverables broken down into each area of the game which must be met to achieve the milestone.

· A list of deliverables which have an agreed, achievable base target, but with a higher targeted list of desirable objective which would improve on, or compensate for other areas of the code which are unable to meet the base target for whatever reason.

Beta

Beta Acceptance is fairly straightforward. Ultimately, this should be a version of the game that contains no severe bugs thus allowing the master testing period to focus on playthroughs and functionality testing. So really, the only remit is that it is free of any problems which prevent completion or significantly detract from the quality of the game.

Key to ensuring comprehensive coverage of all areas of the game during Beta testing, detailed test planning is required. Test plans are usually drawn up prior to alpha as the process can take a considerable amount of time (especially with multiplayer games) and it is important to do this without eating into valuable testing time. Test plans help focus the testing and can be a useful guide to see which areas of the code have not had or not been in a condition to have focussed testing.

There are a variety of specialist tests that need to take place during the QA period of a game. One key test is to ensure the game meets requirements laid out by the hardware manufacturer, whilst organizing multiplayer testing can be led by QA staff with experience of multiplayer gaming and can help write specific testing plans aimed at mimicking the behaviour of online gamers. Also, playthroughs can be a lengthy process that can require considerable manpower to cover multiple ways of completion.

Master

Master testing in the stage at which no major bugs should exist within the title nor should any be found. In many cases Master testing tries to emulate the testing performed during Certification/Approvals. The game is tested as if it is being played as a buying customer. A customer is more inclined to make unusual decisions or spend time playing around in the menus to find their optimal setup.

Quality Tools

Bug Database

Out internal QA are flexible regarding Bug Databases. Because the majority of bug testing is performed by the publisher’s QA, the internal QA will use whatever database it is requested we use by the publisher, as long as it is supplied by the publisher. For the purposes of internal testing, an Access based database is used prior to publisher involvement for the purposes of bug reporting and gameplay feedback.

Test Plans

There are a variety of ways of creating test plans, internal QA use a process that combines milestone checks and testing of the code. Bear in mind that the focus of the internal QA is more targeted on gameplay than bug checking, so whilst the amount of information in the test plan is quite low, it covers the areas critical to the internal QA requirements. We would anticipate the publishers QA would develop their own test plans.

Build delivery schedule

There needs to be an assessment of the time required to fully test a complete build. By simply leaving the QA team to evaluate the areas of the game (both front end and back end), we can estimate the time required to fully test a build and thus the number of builds required for QA weekly.

Quality Assurance

QA in programming

The internal QA will also check any possible release candidates to ensure they are of a required standard to leave the studio. This would normally occur by the QA checking against a list of features and changes in the build supplied by the dev team, to ensure it meets the required target. Other than major bugs preventing gameplay, bug checking would not be part of what occurs during this phase unless only remaining tasks are bug fixes.
QA reviews in programming

From the stage we reach feature complete, these should occur as a matter of course through the internal weekly meeting mechanism, along with any additional feedback required by the publisher regarding numbers of fixes, etc will happen as an when the publisher requires this information and will be delivered by the External Producer for Morpheme.
Quality Assurance Roles and Responsibilities:

Internally

Simon Belton: QA Manager

Dominic Andoh: Lead Tester

TBC: Tester

Responsibilities of Team

Gameplay feedback

Milestone Checklist (Internal)

Version control

Bug Testing

Playthroughs

Test Planning (Internal)

Externally

Publisher preferred Testers

Responsibilities of Team

Bug Testing

Test Planning (Publisher)

Build Delivery Schedule

Milestone Checklist (Publisher)

Specialist Guideline Testing

Specialist Multiplayer Testing

Approvals Testing

Playthroughs

Bug Database Management

Communicating between teams

Communication between the publisher’s QA and the Dev team will go through Morpheme’s External Producer. It will be the responsibility of QA to provide the External Producer with regular bug reports (probably daily), and bug responses. It will be my responsibility to provide developer bug responses, claim fixed lists and information of new build delivery.

Any specific need for either Publisher QA or Dev to speak direct to each other will be assessed on a case by case basis.

Technical Appendix

8-Kings Class Documentationtc "Class Documentation"
GameAPI Class Reference

tc \l 2 "GameAPI"

xe "GameAPI"
The GameAPI class is the main interface between the engine and the game.

Collaboration diagram for GameAPI:

[image: image5.wmf]

Public Member Functions

void Destruct (void)

void TAG_Begin (void)

t_Skeleton * Skeleton_Load (char *leafname, char *txtext)

void Skeleton_DrawFrame (t_Skeleton *skeleton, int frame)

t_Texture * Texture_LoadSprite (char *name, int width, int height, int bpp)

void Texture_Name (t_Texture *texture, char *name)

void Texture_Add (t_Texture *toadd)

t_Model * Model_Allocate (char *name, int nverts, int nfaces)

void Model_Add (t_Model *toadd)

void Model_Save (t_Model *model, char *name)

t_Model * Model_Load (char *name)

t_Model * Model_LoadASC (char *name)

void Model_Name (t_Model *thismodel, char *name)

void Model_Center (t_Model *thismodel)

void Model_Scale (t_Model *thismodel, Scalar scale)

void Model_ApplySphericalMapping (t_Model *thismodel, Scalar scale)

void Model_FlipFaces (t_Model *thismodel)

void Model_FlipMapping (t_Model *thismodel, bool uaxis, bool vaxis, bool rebase)

void Model_ApplyMaterial (t_Model *thismodel, t_Material *thismaterial)

void Model_CalculateNormals (t_Model *thismodel)

void Model_Update (t_Model *thismodel)

void Model_LightInfinite (t_Model *thismodel, Vec3i direction)

void Model_LightInfiniteClamp (t_Model *thismodel, Vec3i direction)

bool Model_WouldDraw (t_Model *thismodel, t_Matrix *thismatrix)

void Model_Draw (t_Model *thismodel, t_Matrix *thismatrix, bool doTrivialReject=true)

int GetFontHeight () const

bool VertexApplyPerspective (Vec3i &screenvertex, const Vec3i &thisvertex, t_Matrix *thismatrix)

t_Matrix * Transform_Init (void)

t_Matrix * Transform_Push (t_Matrix *input)

t_Matrix * Transform_Pop (void)

t_Matrix * Transform_Read (void)

void ModelLib_SetPlotterDepth (int depth)

void ModelLib_SetFrameBuffer (int width, int height, int depth, int apparent_width, int apparent_depth)

void Resource_Init (void)

void Resource_Add (int type, char *name, void *data)

void Resource_Remove (int type, char *name)

void * Resource_Find (int type, char *name)

t_Texture * Texture_Find (char *name)

void AddFaceToBucket (int index, t_Face *theFace, Scalar sortValue)

void FaceList_Init (int entries, int maxverts=0)

void FaceList_Begin (void)

void FaceList_StateSet (bool state)

bool FaceList_StateRead (void)

void FaceList_Sort (void)

void FaceList_Draw (void)

t_Material * Material_Allocate (char *name)

void Material_Name (t_Material *material, char *name)

void Material_Update (t_Material *material)

void Material_Add (t_Material *toadd)

void Video_Init (void)

void Video_SetMode (void)

void Video_SwapScreenBanks (void)

void Video_Vsync (void)

void Video_Error (void)

void Video_Clear (void)

void Video_Clear (unsigned short colour)

void Video_DrawPixel (unsigned short colour, int x, int y)

void Video_DrawText (char *text, int xpos, int ypos)

int Video_DrawText (char *text, int xpos, int ypos, int maxwidth, int maxheight, int scroll=0)

void Video_DrawText (t_Texture *destination, char *text, int xpos, int ypos)

int Video_DrawText (t_Texture *destination, char *text, int xpos, int ypos, int maxwidth, int maxheight, int scroll=0)

void SetFont (MyFont *aMyFont)

t_Face * Face_Begin (void)

t_Vertex * Face_VertexAdd (Scalar x, Scalar y)

void Face_End (void)

t_Actor * Actor_Allocate (char *name, int type, t_Model *model)

void Actor_Free (t_Actor *actor)

void Actor_Name (t_Actor *actor, char *name)

void Actor_Link (t_Actor *parent, t_Actor *actor)

void Actor_Remove (t_Actor *source)

t_Actor * Actor_Load (char *name)

void Actor_Save (t_Actor *actor, char *name)

void Actor_Render (t_Actor *actor)

void Shape_Tessalte (t_Model *model)

t_Model * Shape_Plane (Scalar scalex, Scalar scaley, Scalar scalez)

t_Model * Shape_Cube (Scalar scalex, Scalar scaley, Scalar scalez)

t_Model * Shape_Sphere (Scalar scalex, Scalar scaley, Scalar scalez, int segments, int subseg)

t_Model * Shape_Cylinder (Scalar scalex, Scalar scaley, Scalar scalez, int segments, int subdiv)

t_Model * Shape_Torus (Scalar scalex, Scalar scaley, Scalar scalez, int segments, int subseg, Scalar majorradius, Scalar minorradius)

t_Model * Shape_Grid (Scalar scalex, Scalar scaley, int divisionx, int divisiony)

void SetScreenInfo (void *pdata, int width, int height, int bpp)

void Skel_LoadASOFile (char *leafname, char *txtext, t_Model **modelarray=0, t_Material **materialarray=0, bool convertuvs=true)

int Skeleton_AttachVUE (t_Skeleton *skel, char *leafname)

int LoadTEXFile (const char *filename, t_Texture **loadedPointers=0, int maxNumLoaded=0)

void FreeTextures (t_Texture **loadedPointers, int maxNumLoaded)

int CurrentKey (void)

bool IsKeyPressed (int aScanCode)

TBool HasKeyBeenPressed (const int keyCode)

TBool HasKeyBeenReleased (const int keyCode)

void TickKeys ()

t_Texture * GetScreenTexture (void) const

int GetScreenWidth (void) const

int GetScreenHeight (void) const

int GetScreenBPP (void) const

void SetScreenTexture (const t_Texture *texture=0)

int GetNumberOfListEntries (void)

Scalar GetTime (void)

Static Public Member Functions

bool File_Exist (char *filename)

FILE * File_Open (char *filename, char *permissions)

void * File_Load (char *filename)

void ParanoidCheck (char *file, int line, char *message)

GameAPI * GetCurrentGameAPI (void)

Public Attributes

t_Matrix mCameraMatrix

Scalar mScreenXScale

Scalar mScreenYScale

MyFont * mFont
BTContainerService Class Reference

This is a container service for the BlueTooth network that allows data to be sent and received in a network session.

Collaboration diagram for BTContainerService:

[image: image6.png]
Public Types

enum State { kDoingInit, kIsNothing, kStartServer, kStartClient, kIsServer, kIsClient, kDoDelete, kDeleteDone }

Public Member Functions

void StartServer (void)

void StartClient (void)

State GetState (void)

void SendData (void *data, int length)

int RecvData (void *data)

void MainPoll (void)

void CreateThread (void)

ContainedExample Class Reference

Detailed Description

This class contains much of the controlling logic and state system for the main loop of the game. This class directly inherits a from GameAPI.

Inheritance diagram for ContainedExample:

[image: image7.png]
Public Types

enum GameState { kTitle = 0, kProfile, kMap, kOffice, kBattleMap, kBattleAnimation, kGameOver }

enum DoingWhat { U1_Move = 0, U1_Fire, U2_Hit, U2_Die, U1_Celebrate, U2_Fire, U1_Hit, U1_Die }

Public Member Functions

t_Model * LoadModel (char *fileNameRoot, bool nolightmaterials=true, t_Texture **loadedTextures=0, int maxNum=0, int *loadedNum=0)

void Run (void)

void LoadData (void)

void InitArrays (void)

void LoadInterface (void)

void InitCamera (void)

void LoadMapNames (void)

void LoadMap (char *fileName)

void SwitchToBattleMap ()

void PopulateStatusWindow ()

int getLeftmostTile ()

int getRightmostTile ()

int getUppermostTile ()

int getLowermostTile ()

void InitStatusWindow ()

void SwitchToBattle (BattleParams *side1=0, BattleParams *side2=0)

void ResetBattle (void)

void SetupBattle (BattleParams *side1, BattleParams *side2)

void DoBattleDraw (void)

void DoBattleLogic (void)

void BattlePreInit (void)

void BattleSwitchState (DoingWhat state)

void DoBattleTidyUp (void)

void SwitchToOffice (void)

void OfficePreInit (void)

void ResetOffice (void)

void DoOfficeDraw (void)

void DoOfficeLogic (void)

void DoOfficeTidyUp (void)

void SwitchToMap (void)

void MapPreInit (void)

void ResetMap (void)

void DoMapDraw (void)

void DoMapLogic (void)

void DoMapTidyUp (void)

void SwitchToOptions (void)

void OptionsPreInit (void)

void ResetOptions (void)

void DoOptionsDraw (void)

void DoOptionsLogic (void)

void DoOptionsLoad (void)

void DoOptionsSave (void)

void StrategyPreInit (void)

void DoStrategyDraw (void)

void DoStrategyLogic (void)

void DoStrategyTidyup (void)

void SwitchToProfile (void)

void ProfilePreInit (void)

void ResetProfile (void)

void DoProfileDraw (void)

void DoProfileLogic (void)

void DoProfileTidyUp (void)

void SwitchToGameOver (void)

void GameOverPreInit (void)

void ResetGameOver (void)

void DoGameOverLogic (void)

void DoGameOverDraw (void)

void DoGameOverTidyUp (void)

void StartDayDisplay (int day)

void StartPlayerDisplay (int player)

void DayAndPlayerDraw (void)

void initInfoWindows ()

void tickInfoWindows ()

void drawInfoWindows ()

void initTileWindow (Location *aLocation)

void initUnitWindow (Unit *aUnit)

void initDayWindow (int aDay)

void disableDayWindow ()

void DrawProgress (Scalar aProgress, int aBackgroundColour, int aForegroundColour, int aX=56, int aY=100, int aWidth=64, int aHeight=5)

void FillRect (int aX, int aY, int aWidth, int aHeight, int aColour, Scalar aAlpha)

void InitBreakApart (void)

void DrawBreakApart (void)

Scalar getTimeDelta ()

Static Public Member Functions

void DrawScrollBar (int orientation, int x, int y, int width, int height, int positions, int currPosition, int leftmost, int rightmost, int foreground, int background, int secondaryground)

Public Attributes

int mOptionMusicVolume

int mOptionEffectsVolume

Language * mLanguage
MyFont * mDebugFont

MyFont * mBigFont
t_Texture * smallPlayerProfiles [8]

t_Texture * smallPlayerProfilesMask [8]

void * mMusicMap [2]

void * mMusicBattle [2]

void * mMusicOffice [2]

bool doGameLoop

bool doZSort

BTContainerService * mNetworkService
FileSystem Class Reference

Detailed Description

This class contains various static methods that can read from a compress or uncompressed type of file.

Static Public Member Functions

size_t comp_fread (void *data, size_t size, size_t num, FILE *fp)

size_t comp_fwrite (const void *data, size_t size, size_t num, FILE *fp)

int comp_fseek (FILE *fp, long offset, int seek_pos)

long comp_ftell (FILE *fp)

int comp_feof (FILE *fp)

char * comp_fgets (char *buffer, int maxlength, FILE *fp)

int comp_fscanf (FILE *fp, const char *charfmt,...)

int comp_fgetc (FILE *fp)

FILE * comp_fopen (const char *name, const char *type)

int comp_fclose (FILE *fp)

XPCompression Class Reference

Detailed Description

A general purpose lossless compression and decompression class

Public Member Functions

XPCompression ()

virtual ~XPCompression ()

int CalculateMaximumMemory (int size)

bool Compress (void *source_data, int source_length, void *destination_data, int *destination_length, int level=10)

bool Decompress (void *source_data, int source_length, void *destination_data, int *destination_length)

TiledBackground Class Reference

Detailed Description

This class handles the update of the main game map screen.

Inheritance diagram for TiledBackground

[image: image8.png]
Collaboration diagram for TiledBackground

[image: image9.png]
Public Member Functions

TiledBackground (int aWidthInTiles, int aHeightInTiles, int aTileX, int aTileZ)

virtual ~TiledBackground ()

int getLocationsInRange (BaseLinkList *list, int startX, int startZ, int minRange, int maxRange=1)

int getUnitsInLocations (BaseLinkList *locationList, BaseLinkList *unitList)

void Draw ()

void DrawHighlight ()

void Tick ()

void setTile (int aX, int aY, int aValue, int aRotation=0)

void setTile (int aX, int aY, int aValue, int aRotation, int team)

void setUnitAt (int aX, int aY, Unit *aValue)

void setUnitAt (Coordinate *aCoordinate, Unit *aValue)

Location * getTile (int aX, int aY)

Location * getTile (Coordinate *aCoordinate)

void BuildRoutes (int aX, int aZ)

void ClearRoutes ()

void MarkAttackableTiles (const Unit *unit)

void ClearAttackableTiles ()

bool IsValidCoordinate (int aX, int aZ)

bool IsValidCoordinate (Coordinate *aCoord)

int GetHeightAt (int aX, int aZ)

int GetMaxHeight (int realX, int realZ, int width, int height)

Unit * getUnit (int aUnitID)

BaseLinkList * getUnitList ()

void setUnitList (BaseLinkList *aUnitList)

TurnController * getTurnController (void) const

void setTurnController (TurnController *aTurnController)

Cursor * getCursor (void) const

void setCursor (Cursor *aCursor)

Public Attributes

int mTilesInX
int mTilesInZ
bool flattenBuildings
Static Public Attributes

int * tileHeights = 0

int * defencePointsByTerrainGroup = 0

int * terrainGroupsByTile = 0

int ** terrainCosts = 0

int * textGroupsByTile = 0

char ** tileTagNames = 0

bool * teamedByTile = 0

t_Model *** mTiles = 0

Skinning *** mSkins = 0

Skinning::SkinAnimatiomInfo *** mAnimInfo = 0

t_Model ** mSelected = 0

char ** shortNames = NULL

char ** longNames = NULL

char ** descriptors = NULL

char ** resourceDescriptors = NULL

Cursor Class Reference

Detailed Description

The Cursor class helps the schedule turns for each player and handle player input.

Inheritance diagram for Cursor

[image: image10.png]
Collaboration diagram for Cursor

[image: image11.wmf]

Public Member Functions

Cursor ()

virtual ~Cursor ()

void InitMap ()

void Init ()

void Draw ()

void DrawArrow ()

void DrawOptions ()

void DrawArrow (int aX, int aY, int aType, bool aHead)

void Tick ()

Vec3i Get3DPosition (void)

bool AttemptToFire () const

void PrepareToFire ()

void PrepareActionMenu ()

void PrepareTargetList (Unit *unit)

void PrepareManagementMenu ()

void DeselectCurrentUnit ()

void SelectUnit (Unit *aUnit)

void SelectTile (Location *aLocation)

void DeleteUnit (Unit *unit)

virtual void processAction (MenuCommand *aMenuCommand)

void Drop (Unit *unit)

void Move ()

void Undo ()

int getXTile () const

int getZTile () const

bool isWinner ()

bool isSelected ()

TurnController * getTurnController () const

void setIntelScreen (IntelScreen *aIntelScreen)

void setTiledBackground (TiledBackground *aTiledBackground)

TiledBackground * getTiledBackground (void)

void setResManagement (ResManagement *aResManagement)

ResManagement * getResManagement (void)

Public Attributes

TextMenu * managementMenu
bool mSelected
Static Public Attributes

t_Model * CursorModels [2]

t_Model * TopCursorModels [2]

t_Model * ArrowModels [4]

t_Model * TargetModels [2]

MenuCommand * selectTileCommand = 0

MenuCommand * selectUnitCommand = 0

GameObject Class Reference

Detailed Description

This class handles a database of game objects.

Inheritance diagram for GameObject

[image: image12.png]
Collaboration diagram for GameObject

[image: image13.png]
Public Member Functions

GameObject ()

virtual ~GameObject ()

void Delete (void)

virtual void Tick (void)

virtual void Draw (void)

virtual void Message (EMessage message, void *data)

Static Public Member Functions
void TickAll (void)

void DrawAll (void)

void MessageAll (EMessage message, void *data)

_1115818370.doc
[image: image1.png]

_1115819539.doc
[image: image1.png]

