8-Kings Code design document – 29 May 2003

Authors:

Martin Piper

Will Hanson

Contents

2Contents

41.3
 DESIGN – TECHNOLOGY

41.3.1
 Technology concepts

41.3.1.1
Introduction

41.3.1.2
Program execution

41.3.1.3
Base platform Specification

51.3.1.4
Supporting tools

51.3.2
Graphics techniques

51.3.2.1
Introduction

51.3.2.2
3D Rendering

61.3.2.3
Model animation

61.3.2.4
Coordinate space

61.3.2.5
Resources

61.3.2.6
2D Graphics

61.3.3
Audio mixer design

61.3.3.1
Requirements for mixer

61.3.3.2
Mixer design

71.3.4
 Player input

71.3.4.1
The input API specification

71.3.5
 Network

71.3.5.1
The network API specification

81.3.6
 Platform specific implementation issues for the N-Gage

81.3.6.1
Processor

81.3.6.2
OS

81.3.6.3
Memory

81.3.6.4
Display resolution

81.3.6.5
Sound

81.3.6.6
Player input

91.3.6.7
Network

91.3.7
 Performance now and future optimisations

101.4
DESIGN - SUBSYSTEMS

101.4.1
Subsystem design

101.4.1.1
Subsystem list

101.4.1.2
AI design considerations

10Project Based

141.4.1.3
UI design considerations

151.4.1.4
Data files considerations

161.4.1.5
Multiplayer design considerations

171.4.1.6
Localisation design

171.4.1.7
Game and map editor

211.4.2
 External libraries

211.4.2.1
Sound system

211.4.2.2
Graphics system

211.4.2.3
Connectivity

211.4.3
Tools and sofware

211.4.3.1
List of tools needed

221.5
 Programming related risks

23Technical appendix

238-Kings Class Documentation

24GameAPI Class Reference

24Public Member Functions

26Static Public Member Functions

26Public Attributes

27BTContainerService Class Reference

27Public Types

27Public Member Functions

28ContainedExample Class Reference

28Detailed Description

28Public Types

28Public Member Functions

30Static Public Member Functions

30Public Attributes

31FileSystem Class Reference

31Detailed Description

31Static Public Member Functions

32XPCompression Class Reference

32Detailed Description

32Public Member Functions

33TiledBackground Class Reference

33Detailed Description

33Inheritance diagram for TiledBackground

33Collaboration diagram for TiledBackground

34Public Member Functions

34Public Attributes

34Static Public Attributes

35Cursor Class Reference

35Detailed Description

35Inheritance diagram for Cursor

35Collaboration diagram for Cursor

35Public Member Functions

36Public Attributes

36Static Public Attributes

37GameObject Class Reference

37Detailed Description

37Inheritance diagram for GameObject

37Collaboration diagram for GameObject

37Public Member Functions

37Static Public Member Functions

1.3

DESIGN – TECHNOLOGY

1.3.1

Technology concepts

1.3.1.1
Introduction

The game is being programmed for the Nokia n-gage mobile phone game deck. The actual code for the game is split in to two parts containing the engine and the game logic.

The game engine controls access to the target platform, the n-gage in this case, and also controls sound, music, screen display, input and access to a network data packets. The game engine provides a cross platform base specification for the game logic to interface with.

The game logic code is what makes 8-Kings play like 8-Kings. The game logic code includes things like the AI, map drawing, player control logic and user interface.

The game logic code also interfaces with a game editor specifically designed to facilitate the games designer to create maps and levels for the game logic to use.

1.3.1.2
Program execution

An initial application boot-up with access to a stack and an entry point “hook” for the application.

1.3.1.3
Base platform Specification

The base platform specification is assumed to be a processor capable of 32 bit memory access (aligned) with integer add and multiply maths operation without floating point. The smallest memory size can be as low as 256K of useable RAM.

A compressed file system is also provided to allow data files to be squeeze as small as possible on a target device. This also helps to add a layer of protection, as the compressed files are harder to read than normal plain binary files.

Direct to screen access with a minimum resolution of 176x208 pixels and 12-bit colour using a standard two bytes per pixel arrangement.

Key and joy-pad input with at least two simultaneous keys held down.

32 Channel 16KHz mono sound and music.

Network data packets assuming a minimum size of 576 bytes for a reliable packet. The network on the device could be Bluetooth, GPRS or some other packet based protocol.

1.3.1.4
Supporting tools

A 3Dstudio Max (5.1) exporter with character studio can export models and animations to the Argonaut AMF file format.

File import tools convert models and animations from AMF files to files used by the engine.

Sample and music conversion.

File compression.

1.3.2
Graphics techniques

1.3.2.1
Introduction

The GameAPI class provides 3D and 2D rendering.

1.3.2.2
3D Rendering

Triangle polygons with any combination of the following effects:

· Flat shading.

· Intensity gouraud shading without dithering.

· RGB per vertex gouraud shading without dithering.

· Additive alpha transparency with 256 levels. Transparency per polygon is taken from the material alpha setting (0% to 100%). Note this is not the same as an alpha map which has transparency per pixel information.

· Texture mapping, non-perspective correct, with any UV ranges per vertex and bill boarding tests. Tiling is supported.

· Sub-pixel correction but no edge anti-alias.

· Sub-division can be used to avoid texture warping.

· Z-Buffering/Z-Sorting.

The engine can also draw textured sprites with rotation and scale and transparency with mask tests.

1.3.2.3
Model animation

3D Models can be deformed using a weighted skinning animation system. This provides very realistic movement straight from 3D Studio Max that can be replayed in game. This technique is used on many modern games.

1.3.2.4
Coordinate space

A matrix hierarchy is provided to allow complex movement of models to be calculated and accumulated.

1.3.2.5
Resources

Internally resources for textures, materials and models are managed and can be dynamically loaded and removed from memory when needed.

1.3.2.6
2D Graphics

A “Blitter” API allows graphics to be drawn and manipulated with various image and colour processing effects to provide a good variation of on screen effects.

1.3.3
Audio mixer design

1.3.3.1 Requirements for mixer

The sound API requires a base specification of at least one PCM sampled 8bit stream. Using this the main music and sound effect manager can combine channels in to the stream.

1.3.3.2 Mixer design

The sound manager can mix:

· 32 Channel music using an existing format of music known as MOD/XM files.

· 32 Channel sound effect channels, multiplexed with the music channels, and using samples with variable pitch offsets.

The MOD/XM files allow music to be composed using samples and were first used by the Amiga home computer in the 1980’s.

The format is particularly suited to machines with small (compared to modern PC’s and consoles) memory footprints. The sampled nature of the sounds reduces the CPU time needed to render complex waveforms. The format is well known and many public domain tools exist that allow easy editing of MOD/XM files.

Lastly the sampled sounds often sound better than sounds produced by simple CPU calculated waveforms.

1.3.4

Player input

1.3.4.1
The input API specification

· Multiple key press event detection.

· At least 2 simultaneous key press events.

1.3.5

Network

1.3.5.1
The network API specification

· 576 Byte reliable data packets.

· 576 Byte unreliable data packets.

· Session management with “player ID” join and leave messages.

· A session finding and lobby interface.

1.3.6

Platform specific implementation issues for the N-Gage

1.3.6.1
Processor

The n-gage uses a 32-bit 100MHz ARM 9 integer RISC processor. The instruction set can use 32-bit or 16-bit (thumb) instructions. There is no processor instruction or data cache.

1.3.6.2
OS

The OS is a revision of Symbian Series 60. This platform uses a pre-emptive multi-tasking GUI.

1.3.6.3
Memory

The total amount of useable RAM for the application is approximately 6.2Mb. Storage is provided by means on a memory card providing approximately 16-32Mb of data space.

1.3.6.4
Display resolution

The screen resolution is 176x208 pixels using a bit depth of 4 bits per colour channel per pixel and 4 bits of unused data making a total of 16 bits per pixel. Drawing to the screen is accomplished by opening a Symbian GUI full screen window using the GUI Window server interface. A bitmap image can then be drawn to this window. Doing this allows the normal phone application windows to appear in front of the game display, if needed, to allow phone calls to be answered.

1.3.6.5
Sound

Sound is provided by the Symbian OS and comes in the form of a 16KHz single channel mono data stream. The engine mixes the 32-channel sound from the music and sound effects manager in to a single channel sampled stream ready to be sent to the n-gage media manager as small chunks of data.

1.3.6.6
Player input

The Symbian GUI already provides an event driven key input system. It can be persuaded to produce multiple key events by sending an undocumented, but valid, event to the window server. The key scan codes needed conversion to the API internal values.

1.3.6.7
Network

Bluetooth and GPRS are used by the mobile phone. The network API transparently allows data packets to be sent and the relevant work is done to send these packets using the preferred protocol. The GPRS specification needs finalising when access is granted to the n-gage SDK.

1.3.7

Performance now and future optimisations

Using a 100MHz ARM 9 Nokia n-gage the performance is approximately 1000 textured lit triangles with an average size of 10x10 pixels at 20 frames per second.

Future optimisations include:

· Pipeline optimisations to avoid memory and clipping duplication.

· Hand optimisation of key routines such as polygon drawing, transformation of points and clipping to common target CPUs such as 32 bit ARM code.

· On platforms with extra memory, such as the Nokia n-gage, memory can be used for lookup tables to speed up maths operations and coloured pixel manipulation.

1.4
DESIGN - SUBSYSTEMS

1.4.1
Subsystem design

1.4.1.1 Subsystem list

· Game code

· Game data

· 2D Graphics

· Fonts

· 3D Models and animations

· Map data

· Computer AI

· Game loading and saving

· GameAPI

· Screen display

· Render 2D graphics

· Render 3D graphics

· Audio mixing

· Player input

· Network packets

· Game and map editor

· Max model conversion

· File compression

1.4.1.2
AI design considerations

There are several possible approaches to the AI, each with its characteristic advantages and disadvantages. The major ones are detailed below.

Project Based

In this approach the AI attempts to reason like a human player. From turn to turn, the AI will keep a track of it’s current overall objectives, for example, destroying all enemy units, and a list of sub-goals with various priorities. For example capturing an area of the map, destroying an enemy medium tank.

The AI can assign units to each of these projects, based upon how effectively each unit can assist in carrying out the priority, and how important the project is. There would be, for example, little point in removing a valuable unit from a valuable project to accomplish a large part of a very low project action.

Once units are assigned to projects, the AI will then step through each unit and decide the specific course of action for it, to best achieve the aims of the project.

The advantages of this method are that it should produce a reasonably human style of play, based as it is on human devised strategies. It should also be quick to execute and relatively lightweight in terms of memory requirements.

The disadvantages are that the human style of play will inevitably mirror some of the development team’s own play preferences, along with their tactical weaknesses. Additionally it is hard to generate a set of strategies that cover ALL game scenarios and do not occasionally leave the AI floundering with an unwise set of projects.

Board Evaluator

In this approach, we would devise a series of measures of success about a given game. For example, how many total health points do I have. The AI can then look at any board instance and produce a score of desirability based on some top-level goals, for example, destroy ten enemy units to win the map.

We can then generate each possible move for each unit, inflict it onto a copy of the current map, and generate a score for the move. We can then subsequently test all the return moves the AI’s enemy could make from all the generated map positions, scoring all these generated boards. At this stage we would probably have to pick the move that maximises our score after the enemy has retaliated. In some games like chess it is possible to look much further ahead than this, but in 8 Kings there are potentially dozens, not just 5 or 6 moves to choose from at each turn, as each unit (of which there may be 10+) could have 10+ moves available to it. Even with 10 units, making one of potentially 10 moves each at each turn, and disregarding the order in which the units are moved, we would have 10000 boards to consider after 2-ply look-ahead. To look to the next stage (the map state after the AI’s subsequent move) would require examining 1000000 moves. Clearly this move tree grows far too quickly. It would be possible to prune the tree after each stage perhaps, but still we are looking at a lot of moves.

The advantages of this approach are that we could decide only the components of the scoring function, then set the AI to play thousands upon thousands of games against itself, adjusting the weightings after each game. This would produce an AI potentially with performance far in excess of the project based AI.

Disadvantages are the amount of processor and memory the AI could require to operate, the time it would require to train the AI, and the fact that it may not play in a very human way. It could take the AI several seconds to evaluate all of the potential moves available to it, especially with other graphical tasks going on as well.

Conclusion

In conclusion it seems that the project based AI will probably be best suited to 8 Kings. It can be quickly prototyped, without the need for lengthy training sessions, although it might be possible to use a learnt weighting for its different projects once generated. Additionally whilst it may make some tactical mistakes, it is felt that it will be possible to make an AI which plays a sensible game in most circumstances and users will be more comfortable playing against an opponent who has a reasonably predictable, human-esque style of play, rather than a purely scored approach which may make moves that although unlikely to cause detriment to the AI’s team, are not particularly engaging to play against. Given the relatively short development time available we consider it best to opt for the project based AI which can be progressively honed throughout the course of the development period.

1.4.1.3
UI design considerations

As a result of feedback to the prototype versions so far developed, we will be making some changes to the UI in game. Amongst these changes are

· Improvement of the cursor graphic

· Correctly implement highlighting of tiles to show possible moves. In future we will tint the textures of the models themselves rather than simply drawing a flat layer of semi-transparent 2D tiles on top of the 3D rendered layer.

· When a piece is selected and its possible movement squares are highlighted, if the user moves the cursor across this region quickly, when the cursor reaches the edge of the region, it will stop and wait until the D-Pad is released and repressed.

· The area of the map highlighted by the cursor to show available moves will highlight in the team colours of the current player, rather than the current default red / white. The cursor will also change colour as the player changes.

1.4.1.4
Data files considerations

A game like 8 Kings generates a substantial amount of configurable data, from units, and their behaviours, through the tiles, and the text to associate with each unit and tiles.

To enable artists and designers to be able to tweak the interactions between units, their movement capabilities, representative models and associated text without input from the development team, we are using CSV files editable in Microsoft Excel.

These CSV files allow artists to substitute different model files for units and tiles and designers to edit in game characteristics of units and tiles. We are using these as the loader code was very quick to implement and yet they can also be edited easily in the graphical environment of Excel. They also allow changes to be made without the need for a code recompile.

1.4.1.5
Multiplayer design considerations

To facilitate the addition of both the Bluetooth and GPRS multiplayer games we have encapsulated the actions a player can perform in the Battle Screen into an Action class. These Actions can then be inflicted onto a map, either locally as in a one player or multiplayer hot-seat game, or serialized, sent over a bluetooth or GPRS connection, reconstructed at the other end, and inflicted on the remote device.

This means that as far as the client is concerned, it maintains an Action queue, which it polls for new actions to inflict on the map. Actions can be supplied either from direct local input, a bluetooth network connection or a GPRS connection and most of the game logic need not know the difference between these.

Additionally there will be a lobby service required for the GPRS game and as we currently are ignorant of the detailed operation of the multiplayer server, we have tried to keep the architecture independent of this as far as possible. As far as current code is concerned, whether the players are added by a lobby or chosen from a menu manually, need not concern the game-logic, as far as it is concerned, it has a list of players, who must first synchronize their map representations, and then maintain synchronisation by communicating changes made on each handset to each other, either directly in the bluetooth connection, or via a server (GPRS).

1.4.1.6
Localisation design

Games consoles and mobile phones are sold in global markets and to people speaking many dozens of different languages in many different scripts. We have taken this into consideration from the beginning of our development.

All in game text is held in Unicode format text resources, outside of the source code, and loaded in at runtime. Thus when sending a game for translation we can send only the text resource files, and theoretically need not recompile our code to produce a new skew.

Fonts are drawn using our own graphical font system, allowing us to create a visually attractive font at small sizes. This font contains a descriptor detailing what characters it can render, again in Unicode. When building a new language version we need to know only the Unicode characters held in the translated text resources for that version and then to draw any additional characters required for the translated version. We will be producing a tool to strip out from our master font graphic, any characters not required by a particular language version. This will be done by reading in the entire language resource for that version of the game and removing from the graphic those characters not used.

We will not be supporting right-to-left render order for Arabic text and we plan to render Chinese text left-to-right and top-to-bottom, not the traditional top-to-bottom, left-to-right order. With Chinese text we believe it is going to be impossible to get an attractive font drawn in less than 12x12 pixels, so all text dialogs in our game will have to scale up for a different sized font.

Our goal is to remove the need for most if not all developer input when producing a translation of the game for overseas N-Gage users. We will do this by creating script files and tools to rebuild our text resource files and font files.

It is possible that for Chinese text we may want to generate many of the required characters from an existing font rather than getting an artist to draw them all from scratch.

1.4.1.7 Game and map editor

The editor has been written using Microsoft Foundation Classes for the PC. This provides a windows GUI application that allows map tiles and units to be places by the game designer to produce maps for the game.

[image: image1.png]
Standard operations for loading/saving, cut and paste can be used.

[image: image2.png]
Teams colours for map tiles and units can also be edited to allow a wide variety of game maps to be created.

[image: image3.png]
1.4.2

External libraries

1.4.2.1 Sound system

The GameAPI audio mixer uses mediaclientaudiostream.lib

1.4.2.2 Graphics system

The GameAPI audio mixer uses the window server.

1.4.2.3 Connectivity

The GameAPI uses the standard Bluetooth.lib and esock.lib.

1.4.3
Tools and sofware

1.4.3.1 List of tools needed

Max 5.1

Microsoft Visual Studio 6.0 or dotNET.

Windows 2000

1.5

Programming related risks

The initial 8-Kings application tests used approximately 2.8Mb of RAM during the most intensive part of the execution cycle. This is more than a PS1 game however this is to be expected since we cannot use palette compressed textures and maintain rendering speed. Also some of the graphical techniques used in the game are above what would normally be used in a PS1 game.

An estimate of 10Mb of free RAM would be suitable for the final game. The extra memory would be used for extra graphics and sound data. The engine can also use large lookup tables to accelerate graphics calculation and rendering.

The current space used by the installed files on the phone is 1.24Mb. These files are heavily compressed and are decompressed at load time in to the phone memory. An estimate of 8Mb would be the minimum amount of data needed to contain the whole game with a possibility of reducing graphics and sound effects used. A figure of 16Mb of data would be a reasonable target to make sure all of the designed graphics and sound could be included and to ensure a full game experience.

Tests of Bluetooth have shown no appreciable latency issues and the engine network service seems to cope with data being transmitted using this medium.

GPRS latency is a major concern since to date little work has been done to evaluate this. To maintain a stable and enjoyable game experience round trip latency from player to player should not be more than 1000ms. Packet loss recovery should also try to be within this amount of time however.

Technical appendix

8-Kings Class Documentationtc "Class Documentation"
GameAPI Class Reference

tc \l 2 "GameAPI"

xe "GameAPI"
The GameAPI class is the main interface between the engine and the game.

Collaboration diagram for GameAPI:

[image: image4.wmf]

Public Member Functions

void Destruct (void)

void TAG_Begin (void)

t_Skeleton * Skeleton_Load (char *leafname, char *txtext)

void Skeleton_DrawFrame (t_Skeleton *skeleton, int frame)

t_Texture * Texture_LoadSprite (char *name, int width, int height, int bpp)

void Texture_Name (t_Texture *texture, char *name)

void Texture_Add (t_Texture *toadd)

t_Model * Model_Allocate (char *name, int nverts, int nfaces)

void Model_Add (t_Model *toadd)

void Model_Save (t_Model *model, char *name)

t_Model * Model_Load (char *name)

t_Model * Model_LoadASC (char *name)

void Model_Name (t_Model *thismodel, char *name)

void Model_Center (t_Model *thismodel)

void Model_Scale (t_Model *thismodel, Scalar scale)

void Model_ApplySphericalMapping (t_Model *thismodel, Scalar scale)

void Model_FlipFaces (t_Model *thismodel)

void Model_FlipMapping (t_Model *thismodel, bool uaxis, bool vaxis, bool rebase)

void Model_ApplyMaterial (t_Model *thismodel, t_Material *thismaterial)

void Model_CalculateNormals (t_Model *thismodel)

void Model_Update (t_Model *thismodel)

void Model_LightInfinite (t_Model *thismodel, Vec3i direction)

void Model_LightInfiniteClamp (t_Model *thismodel, Vec3i direction)

bool Model_WouldDraw (t_Model *thismodel, t_Matrix *thismatrix)

void Model_Draw (t_Model *thismodel, t_Matrix *thismatrix, bool doTrivialReject=true)

int GetFontHeight () const

bool VertexApplyPerspective (Vec3i &screenvertex, const Vec3i &thisvertex, t_Matrix *thismatrix)

t_Matrix * Transform_Init (void)

t_Matrix * Transform_Push (t_Matrix *input)

t_Matrix * Transform_Pop (void)

t_Matrix * Transform_Read (void)

void ModelLib_SetPlotterDepth (int depth)

void ModelLib_SetFrameBuffer (int width, int height, int depth, int apparent_width, int apparent_depth)

void Resource_Init (void)

void Resource_Add (int type, char *name, void *data)

void Resource_Remove (int type, char *name)

void * Resource_Find (int type, char *name)

t_Texture * Texture_Find (char *name)

void AddFaceToBucket (int index, t_Face *theFace, Scalar sortValue)

void FaceList_Init (int entries, int maxverts=0)

void FaceList_Begin (void)

void FaceList_StateSet (bool state)

bool FaceList_StateRead (void)

void FaceList_Sort (void)

void FaceList_Draw (void)

t_Material * Material_Allocate (char *name)

void Material_Name (t_Material *material, char *name)

void Material_Update (t_Material *material)

void Material_Add (t_Material *toadd)

void Video_Init (void)

void Video_SetMode (void)

void Video_SwapScreenBanks (void)

void Video_Vsync (void)

void Video_Error (void)

void Video_Clear (void)

void Video_Clear (unsigned short colour)

void Video_DrawPixel (unsigned short colour, int x, int y)

void Video_DrawText (char *text, int xpos, int ypos)

int Video_DrawText (char *text, int xpos, int ypos, int maxwidth, int maxheight, int scroll=0)

void Video_DrawText (t_Texture *destination, char *text, int xpos, int ypos)

int Video_DrawText (t_Texture *destination, char *text, int xpos, int ypos, int maxwidth, int maxheight, int scroll=0)

void SetFont (MyFont *aMyFont)

t_Face * Face_Begin (void)

t_Vertex * Face_VertexAdd (Scalar x, Scalar y)

void Face_End (void)

t_Actor * Actor_Allocate (char *name, int type, t_Model *model)

void Actor_Free (t_Actor *actor)

void Actor_Name (t_Actor *actor, char *name)

void Actor_Link (t_Actor *parent, t_Actor *actor)

void Actor_Remove (t_Actor *source)

t_Actor * Actor_Load (char *name)

void Actor_Save (t_Actor *actor, char *name)

void Actor_Render (t_Actor *actor)

void Shape_Tessalte (t_Model *model)

t_Model * Shape_Plane (Scalar scalex, Scalar scaley, Scalar scalez)

t_Model * Shape_Cube (Scalar scalex, Scalar scaley, Scalar scalez)

t_Model * Shape_Sphere (Scalar scalex, Scalar scaley, Scalar scalez, int segments, int subseg)

t_Model * Shape_Cylinder (Scalar scalex, Scalar scaley, Scalar scalez, int segments, int subdiv)

t_Model * Shape_Torus (Scalar scalex, Scalar scaley, Scalar scalez, int segments, int subseg, Scalar majorradius, Scalar minorradius)

t_Model * Shape_Grid (Scalar scalex, Scalar scaley, int divisionx, int divisiony)

void SetScreenInfo (void *pdata, int width, int height, int bpp)

void Skel_LoadASOFile (char *leafname, char *txtext, t_Model **modelarray=0, t_Material **materialarray=0, bool convertuvs=true)

int Skeleton_AttachVUE (t_Skeleton *skel, char *leafname)

int LoadTEXFile (const char *filename, t_Texture **loadedPointers=0, int maxNumLoaded=0)

void FreeTextures (t_Texture **loadedPointers, int maxNumLoaded)

int CurrentKey (void)

bool IsKeyPressed (int aScanCode)

TBool HasKeyBeenPressed (const int keyCode)

TBool HasKeyBeenReleased (const int keyCode)

void TickKeys ()

t_Texture * GetScreenTexture (void) const

int GetScreenWidth (void) const

int GetScreenHeight (void) const

int GetScreenBPP (void) const

void SetScreenTexture (const t_Texture *texture=0)

int GetNumberOfListEntries (void)

Scalar GetTime (void)

Static Public Member Functions

bool File_Exist (char *filename)

FILE * File_Open (char *filename, char *permissions)

void * File_Load (char *filename)

void ParanoidCheck (char *file, int line, char *message)

GameAPI * GetCurrentGameAPI (void)

Public Attributes

t_Matrix mCameraMatrix

Scalar mScreenXScale

Scalar mScreenYScale

MyFont * mFont
BTContainerService Class Reference

This is a container service for the BlueTooth network that allows data to be sent and received in a network session.

Collaboration diagram for BTContainerService:

[image: image5.png]
Public Types

enum State { kDoingInit, kIsNothing, kStartServer, kStartClient, kIsServer, kIsClient, kDoDelete, kDeleteDone }

Public Member Functions

void StartServer (void)

void StartClient (void)

State GetState (void)

void SendData (void *data, int length)

int RecvData (void *data)

void MainPoll (void)

void CreateThread (void)

ContainedExample Class Reference

Detailed Description

This class contains much of the controlling logic and state system for the main loop of the game. This class directly inherits a from GameAPI.

Inheritance diagram for ContainedExample:

[image: image6.png]
Public Types

enum GameState { kTitle = 0, kProfile, kMap, kOffice, kBattleMap, kBattleAnimation, kGameOver }

enum DoingWhat { U1_Move = 0, U1_Fire, U2_Hit, U2_Die, U1_Celebrate, U2_Fire, U1_Hit, U1_Die }

Public Member Functions

t_Model * LoadModel (char *fileNameRoot, bool nolightmaterials=true, t_Texture **loadedTextures=0, int maxNum=0, int *loadedNum=0)

void Run (void)

void LoadData (void)

void InitArrays (void)

void LoadInterface (void)

void InitCamera (void)

void LoadMapNames (void)

void LoadMap (char *fileName)

void SwitchToBattleMap ()

void PopulateStatusWindow ()

int getLeftmostTile ()

int getRightmostTile ()

int getUppermostTile ()

int getLowermostTile ()

void InitStatusWindow ()

void SwitchToBattle (BattleParams *side1=0, BattleParams *side2=0)

void ResetBattle (void)

void SetupBattle (BattleParams *side1, BattleParams *side2)

void DoBattleDraw (void)

void DoBattleLogic (void)

void BattlePreInit (void)

void BattleSwitchState (DoingWhat state)

void DoBattleTidyUp (void)

void SwitchToOffice (void)

void OfficePreInit (void)

void ResetOffice (void)

void DoOfficeDraw (void)

void DoOfficeLogic (void)

void DoOfficeTidyUp (void)

void SwitchToMap (void)

void MapPreInit (void)

void ResetMap (void)

void DoMapDraw (void)

void DoMapLogic (void)

void DoMapTidyUp (void)

void SwitchToOptions (void)

void OptionsPreInit (void)

void ResetOptions (void)

void DoOptionsDraw (void)

void DoOptionsLogic (void)

void DoOptionsLoad (void)

void DoOptionsSave (void)

void StrategyPreInit (void)

void DoStrategyDraw (void)

void DoStrategyLogic (void)

void DoStrategyTidyup (void)

void SwitchToProfile (void)

void ProfilePreInit (void)

void ResetProfile (void)

void DoProfileDraw (void)

void DoProfileLogic (void)

void DoProfileTidyUp (void)

void SwitchToGameOver (void)

void GameOverPreInit (void)

void ResetGameOver (void)

void DoGameOverLogic (void)

void DoGameOverDraw (void)

void DoGameOverTidyUp (void)

void StartDayDisplay (int day)

void StartPlayerDisplay (int player)

void DayAndPlayerDraw (void)

void initInfoWindows ()

void tickInfoWindows ()

void drawInfoWindows ()

void initTileWindow (Location *aLocation)

void initUnitWindow (Unit *aUnit)

void initDayWindow (int aDay)

void disableDayWindow ()

void DrawProgress (Scalar aProgress, int aBackgroundColour, int aForegroundColour, int aX=56, int aY=100, int aWidth=64, int aHeight=5)

void FillRect (int aX, int aY, int aWidth, int aHeight, int aColour, Scalar aAlpha)

void InitBreakApart (void)

void DrawBreakApart (void)

Scalar getTimeDelta ()

Static Public Member Functions

void DrawScrollBar (int orientation, int x, int y, int width, int height, int positions, int currPosition, int leftmost, int rightmost, int foreground, int background, int secondaryground)

Public Attributes

int mOptionMusicVolume

int mOptionEffectsVolume

Language * mLanguage
MyFont * mDebugFont

MyFont * mBigFont
t_Texture * smallPlayerProfiles [8]

t_Texture * smallPlayerProfilesMask [8]

void * mMusicMap [2]

void * mMusicBattle [2]

void * mMusicOffice [2]

bool doGameLoop

bool doZSort

BTContainerService * mNetworkService
FileSystem Class Reference

Detailed Description

This class contains various static methods that can read from a compress or uncompressed type of file.

Static Public Member Functions

size_t comp_fread (void *data, size_t size, size_t num, FILE *fp)

size_t comp_fwrite (const void *data, size_t size, size_t num, FILE *fp)

int comp_fseek (FILE *fp, long offset, int seek_pos)

long comp_ftell (FILE *fp)

int comp_feof (FILE *fp)

char * comp_fgets (char *buffer, int maxlength, FILE *fp)

int comp_fscanf (FILE *fp, const char *charfmt,...)

int comp_fgetc (FILE *fp)

FILE * comp_fopen (const char *name, const char *type)

int comp_fclose (FILE *fp)

XPCompression Class Reference

Detailed Description

A general purpose lossless compression and decompression class

Public Member Functions

XPCompression ()

virtual ~XPCompression ()

int CalculateMaximumMemory (int size)

bool Compress (void *source_data, int source_length, void *destination_data, int *destination_length, int level=10)

bool Decompress (void *source_data, int source_length, void *destination_data, int *destination_length)

TiledBackground Class Reference

Detailed Description

This class handles the update of the main game map screen.

Inheritance diagram for TiledBackground

[image: image7.png]
Collaboration diagram for TiledBackground

[image: image8.png]
Public Member Functions

TiledBackground (int aWidthInTiles, int aHeightInTiles, int aTileX, int aTileZ)

virtual ~TiledBackground ()

int getLocationsInRange (BaseLinkList *list, int startX, int startZ, int minRange, int maxRange=1)

int getUnitsInLocations (BaseLinkList *locationList, BaseLinkList *unitList)

void Draw ()

void DrawHighlight ()

void Tick ()

void setTile (int aX, int aY, int aValue, int aRotation=0)

void setTile (int aX, int aY, int aValue, int aRotation, int team)

void setUnitAt (int aX, int aY, Unit *aValue)

void setUnitAt (Coordinate *aCoordinate, Unit *aValue)

Location * getTile (int aX, int aY)

Location * getTile (Coordinate *aCoordinate)

void BuildRoutes (int aX, int aZ)

void ClearRoutes ()

void MarkAttackableTiles (const Unit *unit)

void ClearAttackableTiles ()

bool IsValidCoordinate (int aX, int aZ)

bool IsValidCoordinate (Coordinate *aCoord)

int GetHeightAt (int aX, int aZ)

int GetMaxHeight (int realX, int realZ, int width, int height)

Unit * getUnit (int aUnitID)

BaseLinkList * getUnitList ()

void setUnitList (BaseLinkList *aUnitList)

TurnController * getTurnController (void) const

void setTurnController (TurnController *aTurnController)

Cursor * getCursor (void) const

void setCursor (Cursor *aCursor)

Public Attributes

int mTilesInX
int mTilesInZ
bool flattenBuildings
Static Public Attributes

int * tileHeights = 0

int * defencePointsByTerrainGroup = 0

int * terrainGroupsByTile = 0

int ** terrainCosts = 0

int * textGroupsByTile = 0

char ** tileTagNames = 0

bool * teamedByTile = 0

t_Model *** mTiles = 0

Skinning *** mSkins = 0

Skinning::SkinAnimatiomInfo *** mAnimInfo = 0

t_Model ** mSelected = 0

char ** shortNames = NULL

char ** longNames = NULL

char ** descriptors = NULL

char ** resourceDescriptors = NULL

Cursor Class Reference

Detailed Description

The Cursor class helps the schedule turns for each player and handle player input.

Inheritance diagram for Cursor

[image: image9.png]
Collaboration diagram for Cursor

[image: image10.wmf]

Public Member Functions

Cursor ()

virtual ~Cursor ()

void InitMap ()

void Init ()

void Draw ()

void DrawArrow ()

void DrawOptions ()

void DrawArrow (int aX, int aY, int aType, bool aHead)

void Tick ()

Vec3i Get3DPosition (void)

bool AttemptToFire () const

void PrepareToFire ()

void PrepareActionMenu ()

void PrepareTargetList (Unit *unit)

void PrepareManagementMenu ()

void DeselectCurrentUnit ()

void SelectUnit (Unit *aUnit)

void SelectTile (Location *aLocation)

void DeleteUnit (Unit *unit)

virtual void processAction (MenuCommand *aMenuCommand)

void Drop (Unit *unit)

void Move ()

void Undo ()

int getXTile () const

int getZTile () const

bool isWinner ()

bool isSelected ()

TurnController * getTurnController () const

void setIntelScreen (IntelScreen *aIntelScreen)

void setTiledBackground (TiledBackground *aTiledBackground)

TiledBackground * getTiledBackground (void)

void setResManagement (ResManagement *aResManagement)

ResManagement * getResManagement (void)

Public Attributes

TextMenu * managementMenu
bool mSelected
Static Public Attributes

t_Model * CursorModels [2]

t_Model * TopCursorModels [2]

t_Model * ArrowModels [4]

t_Model * TargetModels [2]

MenuCommand * selectTileCommand = 0

MenuCommand * selectUnitCommand = 0

GameObject Class Reference

Detailed Description

This class handles a database of game objects.

Inheritance diagram for GameObject

[image: image11.png]
Collaboration diagram for GameObject

[image: image12.png]
Public Member Functions

GameObject ()

virtual ~GameObject ()

void Delete (void)

virtual void Tick (void)

virtual void Draw (void)

virtual void Message (EMessage message, void *data)

Static Public Member Functions

void TickAll (void)

void DrawAll (void)

void MessageAll (EMessage message, void *data)

_1115818370.doc
[image: image1.png]

_1115819539.doc
[image: image1.png]

