8-Kings Code design document – 29 May 2003

Authors:

Martin Piper

Will Hanson

8-Kings introduction

The game is being programmed for the Nokia n-gage mobile phone game deck. The actual code for the game is split in to two parts containing the engine and the game logic.

The game engine controls access to the target platform, the n-gage in this case, and also controls sound, music, screen display, input and access to a network data packets. The game engine provides a cross platform base specification for the game logic to interface with.

The game logic code is what makes 8-Kings play like 8-Kings. The game logic code includes things like the AI, map drawing, player control logic and user interface.

The game logic code also interfaces with a game editor specifically designed to facilitate the games designer to create maps and levels for the game logic to use.

Game API : Details of what it provides

Cross platform engine base specification

An initial application boot-up with access to a stack and an entry point “hook” for the application.

Direct to screen access with a minimum resolution of 176x208 pixels and 12-bit colour using a standard two bytes per pixel arrangement.

Key and joy-pad input with at least two simultaneous keys held down.

32 Channel 16KHz mono sound and music.

Network data packets assuming a minimum size of 576 bytes for a reliable packet. The network on the device could be Bluetooth, GPRS or some other packet based protocol.

The base platform specification is assumed to be a processor capable of 32 bit memory access (aligned) with integer add and multiply maths operation without floating point. The smallest memory size can be as low as 256K of useable RAM.

A compressed file system is also provided to allow data files to be squeeze as small as possible on a target device. This also helps to add a layer of protection, as the compressed files are harder to read than normal plain binary files.

Supporting tools

A 3Dstudio Max (5.1) exporter with character studio can export models and animations to the Argonaut AMF file format.

File import tools convert models and animations from AMF files to files used by the engine.

Sample and music conversion.

File compression.

The 3D API provides:

Triangle polygons with any combination of the following effects:


Flat shading.


Intensity gouraud shading without dithering.


RGB per vertex gouraud shading without dithering.

Additive alpha transparency with 256 levels. Transparency per polygon is taken from the material alpha setting (0% to 100%). Note this is not the same as an alpha map which has transparency per pixel information.


Texture mapping, non-perspective correct, with any UV ranges per vertex and bill boarding tests. Tiling is supported.


Sub-pixel correction but no edge anti-alias.


Sub-division can be used to avoid texture warping.


Z-Buffering/Z-Sorting.

The engine can also draw textured sprites with rotation and scale and transparency with mask tests.

3D Models can be deformed using a weighted skinning animation system. This provides very realistic movement straight from 3D Studio Max that can be replayed in game. This technique is used on many modern games.

A matrix hierarchy is provided to allow complex movement of models to be calculated.

Internally resources for textures, materials and models are managed and can be dynamically loaded and removed from memory when needed.

A “Blitter” API allows graphics to be drawn and manipulated with various image and colour processing effects to provide a good variation of on screen effects.

The sound API provides:

32 Channel music using an existing format of music known as MOD/XM files. 


32 Channel sound effect channels, multiplexed with the music channels, and using samples with variable pitch offsets.

The MOD/XM files allow music to be composed using samples and were first used by the Amiga home computer in the 1980’s. The format is particularly suited to machines with small (compared to modern PC’s and consoles) memory footprints. The sampled nature of the sounds reduces the CPU time needed to render complex waveforms. The format is well known and many public domain tools exist that allow easy editing of MOD/XM files. Lastly the sampled sounds often sound better than sounds produced by simple CPU calculated waveforms.

The input API provides:


Multiple key press event detection.


At least 2 simultaneous key press events.

The network API provides:


576 Byte reliable data packets.

576 Byte unreliable data packets.

Session management with “player ID” join and leave messages.

A session finding and lobby interface.

Platform specific engine implementation issues for the n-gage

The n-gage uses a 32-bit 100MHz ARM 9 integer processor. The OS is a revision of Symbian Series 60. This platform uses a pre-emptive multi-tasking GUI. The total amount of useable RAM for the application is approximately 11Mb. Storage is provided by means on a memory card providing approximately 16-32Mb of data space.

The screen resolution is 176x208 pixels using a bit depth of 4 bits per colour channel per pixel and 4 bits of unused data making a total of 16 bits per pixel. Drawing to the screen is accomplished by opening a Symbian GUI full screen window using the GUI Window server interface. A bitmap image can then be drawn to this window. Doing this allows the normal phone application windows to appear in front of the game display, if needed, to allow phone calls to be answered.

Sound is provided by the Symbian OS and comes in the form of a 16KHz single channel mono data stream. The engine mixes the 32-channel sound from the music and sound effects manager in to a single channel sampled stream ready to be sent to the n-gage media manager as small chunks of data.

The Symbian GUI already provides an event driven key input system. It can be persuaded to produce multiple key events by sending an undocumented, but valid, event to the window server. The key scan codes needed conversion to the API internal values.

Bluetooth and GPRS are used by the mobile phone. The network API transparently allows data packets to be sent and the relevant work is done to send these packets using the preferred protocol. The GPRS specification needs finalising when access is granted to the n-gage SDK.

Performance now and future optimisations

Using a 100MHz ARM 9 Nokia n-gage the performance is approximately 1000 textured lit triangles with an average size of 10x10 pixels at 20 frames per second.

Future optimisations include:


Pipeline optimisations to avoid memory and clipping duplication.

Hand optimisation of key routines such as polygon drawing, transformation of points and clipping to common target CPUs such as 32 bit ARM code.

On platforms with extra memory, such as the Nokia n-gage, memory can be used for lookup tables to speed up maths operations and coloured pixel manipulation.

The 8-Kings Game Logic

Blah wibble stuff goes here from Will…

The 8-Kings Editor

The editor has been written using Microsoft Foundation Classes for the PC. This provides a windows GUI application that allows map tiles and units to be places by the game designer to produce maps for the game.

Standard operations for loading/saving, cut and paste can be used.

Teams colours for map tiles and units can also be edited to allow a wide variety of game maps to be created.

