N-gage Engine design document – 8 January 2004

Authors:

Martin Piper

Will Hanson

Contents

2Contents

41.3
 DESIGN – TECHNOLOGY

41.3.1
 Technology concepts

41.3.1.1
Introduction

41.3.1.2
Program execution

41.3.1.3
Base platform Specification

41.3.1.4
Supporting tools

51.3.2
Graphics techniques

51.3.2.1
Introduction

51.3.2.2
3D Rendering

61.3.2.3
Model animation

61.3.2.4
Coordinate space

61.3.2.5
Resources

61.3.2.6
2D Graphics

61.3.3
Audio mixer design

61.3.3.1
Requirements for mixer

61.3.3.2
Mixer design

71.3.4
 Player input

71.3.4.1
The input API specification

71.3.5
 Network

71.3.5.1
The network API specification

81.3.6
 Platform specific implementation issues for the N-Gage

81.3.6.1
Processor

81.3.6.2
OS

81.3.6.3
Memory

81.3.6.4
Display resolution

81.3.6.5
Sound

81.3.6.6
Player input

91.3.6.7
Network

91.3.7
 Performance now and future optimisations

101.4
DESIGN - SUBSYSTEMS

101.4.1
Subsystem design

101.4.1.1
Subsystem list

101.4.1.2
Script language

111.4.1.5
Multiplayer design considerations

121.4.1.6
Localisation design

131.4.2
 External libraries

131.4.2.1
Sound system

131.4.2.2
Graphics system

131.4.2.3
Connectivity

131.4.3
Tools and sofware

131.4.3.1
List of tools needed

141.5
 Programming related risks

15N-gage Engine Class Documentation

16GameAPI Class Reference

16Public Member Functions

18Static Public Member Functions

18Public Attributes

19BTContainerService Class Reference

19Public Types

19Public Member Functions

20ContainedExample Class Reference

20Detailed Description

20Public Types

20Public Member Functions

22Static Public Member Functions

22Public Attributes

23FileSystem Class Reference

23Detailed Description

23Static Public Member Functions

24XPCompression Class Reference

24Detailed Description

24Public Member Functions

25TiledBackground Class Reference

25Detailed Description

25Inheritance diagram for TiledBackground

25Collaboration diagram for TiledBackground

26Public Member Functions

26Public Attributes

26Static Public Attributes

27Cursor Class Reference

27Detailed Description

27Inheritance diagram for Cursor

27Collaboration diagram for Cursor

27Public Member Functions

28Public Attributes

28Static Public Attributes

29GameObject Class Reference

29Detailed Description

29Inheritance diagram for GameObject

29Collaboration diagram for GameObject

29Public Member Functions

29Static Public Member Functions

1.3

DESIGN – TECHNOLOGY

1.3.1

Technology concepts

1.3.1.1
Introduction

The game is being programmed for the Nokia n-gage mobile phone game deck. The actual code for the game is split in to two parts containing the engine and the game logic.

The game engine controls access to the target platform, the n-gage in this case, and also controls sound, music, screen display, input and access to a network data packets. The game engine provides a cross platform base specification for the game logic to interface with.

1.3.1.2
Program execution

An initial application boot-up with access to a stack and an entry point “hook” for the application.

1.3.1.3
Base platform Specification

The base platform specification is assumed to be a processor capable of 32 bit memory access (aligned) with integer add and multiply maths operation without floating point. The smallest memory size can be as low as 256K of useable RAM.

A compressed file system is also provided to allow data files to be squeeze as small as possible on a target device. This also helps to add a layer of protection, as the compressed files are harder to read than normal plain binary files.

Direct to screen access with a minimum resolution of 176x208 pixels and 12-bit colour using a standard two bytes per pixel arrangement.

Key and joy-pad input with at least two simultaneous keys held down.

32 Channel 16KHz mono sound and music.

Network data packets assuming a minimum size of 576 bytes for a reliable packet. The network on the device could be BlueTooth, GPRS or some other packet based protocol.

1.3.1.4
Supporting tools

A 3Dstudio Max (5.1) exporter with character studio can export models and animations to the Argonaut AMF file format. The AMF format is based on the work of the existing Argonaut company wide engine. As such the N-gage engine can accept assets produced by the standard artist tools. Assets from other game titles can be imported in to the engine.

File import tools convert models and animations from AMF files to files used by the engine.

Sample and music conversion.

File compression.

1.3.2
Graphics techniques

1.3.2.1
Introduction

The GameAPI class provides 3D and 2D rendering.

1.3.2.2
3D Rendering

Triangle polygons with any combination of the following effects:

· Flat shading.

· Intensity gouraud shading without dithering.

· RGB per vertex gouraud shading without dithering.

· Additive alpha transparency with 256 levels. Transparency per polygon is taken from the material alpha setting (0% to 100%). Note this is not the same as an alpha map which has transparency per pixel information.

· Texture mapping, non-perspective correct, with any UV ranges per vertex and bill boarding tests. Tiling is supported.

· Sub-pixel correction but no edge anti-alias.

· Sub-division can be used to avoid texture warping.

· Z-Buffering/Z-Sorting.

The engine can also draw textured sprites with rotation and scale and transparency with mask tests.

1.3.2.3
Model animation

3D Models can be deformed using a weighted skinning animation system. This provides very realistic movement straight from 3D Studio Max that can be replayed in game. This technique is used on many modern games.

1.3.2.4
Coordinate space

A matrix hierarchy is provided to allow complex movement of models to be calculated and accumulated.

1.3.2.5
Resources

Internally resources for textures, materials and models are managed and can be dynamically loaded and removed from memory when needed.

1.3.2.6
2D Graphics

A “Blitter” API allows graphics to be drawn and manipulated with various image and colour processing effects to provide a good variation of on screen effects.

1.3.3
Audio mixer design

1.3.3.1 Requirements for mixer

The sound API requires a base specification of at least one PCM sampled 8bit stream. Using this the main music and sound effect manager can combine channels in to the stream.

1.3.3.2 Mixer design

The sound manager can mix:

· 32 Channel music using an existing format of music known as MOD/XM files.

· 32 Channel sound effect channels, multiplexed with the music channels, and using samples with variable pitch offsets.

The MOD/XM files allow music to be composed using samples and were first used by the Amiga home computer in the 1980’s.

The format is particularly suited to machines with small (compared to modern PC’s and consoles) memory footprints. The sampled nature of the sounds reduces the CPU time needed to render complex waveforms. The format is well known and many public domain tools exist that allow easy editing of MOD/XM files.

Lastly the sampled sounds often sound better than sounds produced by simple CPU calculated waveforms.

1.3.4

Player input

1.3.4.1
The input API specification

· Multiple key press event detection.

· At least 2 simultaneous key press events.

1.3.5

Network

1.3.5.1
The network API specification

· 576 Byte reliable data packets.

· 576 Byte unreliable data packets.

· Session management with “player ID” join and leave messages.

· A session finding and lobby interface.

1.3.6

Platform specific implementation issues for the N-Gage

1.3.6.1
Processor

The n-gage uses a 32-bit 100MHz ARM 9 integer RISC processor. The instruction set can use 32-bit or 16-bit (thumb) instructions. There is no processor instruction or data cache.

1.3.6.2
OS

The OS is a revision of Symbian Series 60. This platform uses a pre-emptive multi-tasking GUI.

1.3.6.3
Memory

The total amount of useable RAM for the application is approximately 6.2Mb. Storage is provided by means on a memory card providing approximately 16-32Mb of data space.

1.3.6.4
Display resolution

The screen resolution is 176x208 pixels using a bit depth of 4 bits per colour channel per pixel and 4 bits of unused data making a total of 16 bits per pixel. Drawing to the screen is accomplished by opening a Symbian GUI full screen window using the GUI Window server interface. A bitmap image can then be drawn to this window. Doing this allows the normal phone application windows to appear in front of the game display, if needed, to allow phone calls to be answered.

1.3.6.5
Sound

Sound is provided by the Symbian OS and comes in the form of a 16KHz single channel mono data stream. The engine mixes the 32-channel sound from the music and sound effects manager in to a single channel sampled stream ready to be sent to the n-gage media manager as small chunks of data.

1.3.6.6
Player input

The Symbian GUI already provides an event driven key input system. It can be persuaded to produce multiple key events by sending an undocumented, but valid, event to the window server. The key scan codes needed conversion to the API internal values.

1.3.6.7
Network

BlueTooth and GPRS are used by the mobile phone. The network API transparently allows data packets to be sent and the relevant work is done to send these packets using the preferred protocol. The GPRS specification needs finalising when access is granted to the n-gage SDK.

1.3.7

Performance now and future optimisations

Using a 100MHz ARM 9 Nokia n-gage the performance is approximately 1000 textured lit triangles with an average size of 10x10 pixels at 20 frames per second.

Future optimisations include:

· Pipeline optimisations to avoid memory and clipping duplication.

· Hand optimisation of key routines such as polygon drawing, transformation of points and clipping to common target CPUs such as 32 bit ARM code.

· On platforms with extra memory, such as the Nokia n-gage, memory can be used for lookup tables to speed up maths operations and coloured pixel manipulation.

1.4
DESIGN - SUBSYSTEMS

1.4.1
Subsystem design

1.4.1.1 Subsystem list

· Game code

· Game data

· 2D Graphics

· Fonts

· 3D Models and animations

· Map data

· Computer AI

· Game loading and saving

· GameAPI

· Screen display

· Render 2D graphics

· Render 3D graphics

· Audio mixing

· Player input

· Network packets

· Game and map editor

· Max model conversion

· File compression

1.4.1.2
Script language
A high level BASIC like script language is provided for use by the engine to enable designers to take over various AI and player actions so that tutorials and specific scripted events can be written. This Script language is a standalone cross platform system called SymbianScript.

1.4.1.5
Multiplayer design considerations

To facilitate the addition of both the BlueTooth and GPRS multiplayer games we have encapsulated the actions a player can perform in the Battle Screen into an Action class. These Actions can then be thought of as events to be represented on a game world, either locally as in a one player or serialized and sent over a BlueTooth or GPRS connection, reconstructed at the other end, and respresented on the remote device. Actions can be supplied either from direct local input, a BlueTooth network connection or a GPRS connection and most of the game logic need not know the difference between these.

Additionally there will be a lobby service required for the GPRS game and currently we are waiting for technical information from Nokia with regards to detailed operation of the online server, we have tried to keep the architecture independent of this as far as possible. As far as current code is concerned, whether the players are added by a lobby or chosen from a menu manually, need not concern the game-logic, as far as it is concerned, it has a list of players, who must first synchronize their game world representations, and then maintain synchronisation by communicating changes made on each handset to each other, either directly in the BlueTooth connection, or via a server (GPRS).

1.4.1.6
Localisation design

Games consoles and mobile phones are sold in global markets and to people speaking many dozens of different languages in many different scripts. We have taken this into consideration from the beginning of our development.

All in game text is held in Unicode format text resources, outside of the source code, and loaded in at runtime. Thus when sending a game for translation we can send only the text resource files, and theoretically need not recompile our code to produce a new skew.

Fonts are drawn using our own graphical font system, allowing us to create a visually attractive font at small sizes. This font contains a descriptor detailing what characters it can render, again in Unicode. When building a new language version we need to know only the Unicode characters held in the translated text resources for that version and then to draw any additional characters required for the translated version. We will be producing a tool to strip out from our master font graphic, any characters not required by a particular language version. This will be done by reading in the entire language resource for that version of the game and removing from the graphic those characters not used.

We will not be supporting right-to-left render order for Arabic text and we plan to render Chinese text left-to-right and top-to-bottom, not the traditional top-to-bottom, left-to-right order. With Chinese text we believe it is going to be impossible to get an attractive font drawn in less than 12x12 pixels, so all text dialogs in our game will have to scale up for a different sized font.

Our goal is to remove the need for most if not all developer input when producing a translation of the game for overseas N-Gage users. We will do this by creating script files and tools to rebuild our text resource files and font files.

It is possible that for Chinese text we may want to generate many of the required characters from an existing font rather than getting an artist to draw them all from scratch.

1.4.2

External libraries

1.4.2.1 Sound system

The GameAPI audio mixer uses mediaclientaudiostream.lib

1.4.2.2 Graphics system

The GameAPI audio mixer uses the window server.

1.4.2.3 Connectivity

The GameAPI uses the standard BlueTooth.lib and esock.lib.

1.4.3
Tools and sofware

1.4.3.1 List of tools needed

Max 5.1

Microsoft Visual Studio 6.0 or dotNET.

Windows 2000

1.5

Programming related risks

Tests of BlueTooth have shown no appreciable latency issues and the engine network service seems to cope with data being transmitted using this medium. The connectivity side, especially the GPRS was not finalised by Nokia when the N-gage engine was in development and specifically because we were not a Nokia first party title we never had access to the GPRS information.

Technical appendix

N-gage Engine Class Documentationtc "Class Documentation"
GameAPI Class Reference

tc \l 2 "GameAPI"

xe "GameAPI"
The GameAPI class is the main interface between the engine and the game.

Collaboration diagram for GameAPI:

[image: image1.wmf]

_1115818370.doc
[image: image1.png]

