
����
A Commodore 64 Assembler for the IBM PC

Version 1.3

Written by Peter Gonzalez, 1995

pbgonz@mail.wm.edu

 NOTES FROM THE AUTHOR

Getting started
There are a few people who always read the manuals from cover to cover before getting

started, but if you’re the type who would be interested in a Commodore 64 assembler in the first
place, I’m sure you are not among that number. So if you must, go test it out, run the demos,
tinker until you get stuck, and I’ll see you in a few minutes.

* * *
Great! Now let’s get started.

Using This Manual
I’ve divided this document into lots of little sections so you can use it as a reference, but

I’ve also kept it short so that you could easily read it all at once. Also, I’ve stuck mostly to exam-
ples to minimize the boring rhetoric. If you plan to do any serious programming with CASM, you
should read the manual in its entirety before getting started, since it will probably save you a lot of
time and silly mistakes. The language is pretty intuitive, but there are some nice features you
don’t know about.

I will assume that the reader is familiar with the 6502 assembly language as implemented
on the popular Turbo Assembler which runs on the Commodore 64. This manual provides a de-
scription of the CASM language structure, other miscellaneous information, and explanations for
the ancillary utilities CDASM, CDUMP, and CLINK. Sorry, no documentation is available for
the source code, and the source code is only available directly from me.

Isn’t the Commodore 64 Obsolete?
Although the Commodore 64 may be by today’s standards “obsolete,” it is certainly not

useless. For the beginner, the simple 6502 assembly language provides a great introduction to
computer architecture and hardware. For the hobbyist, its compact and simple design makes it
easy to switch over to a battery supply and box up in a homemade case. And yet it has 64K of
RAM, a fancy 3-voice sound synthesizer, and a full NTSC- or PAL-compatible video chip with
programmable characters, single-bit precision scrolling, and 8 movable object blocks.

For the hacker, the hardware is replete with undocumented features to discover, and the
entire CPU bus is available via the user expansion slot in the back. And, of course, for the
gamer/nostalgist, there are literally thousands of free classic video games available on the Internet,
along with two excellent emulators for the PC to save you the trip to the attic. Best of all, the
price has dropped significantly since the advent of the Pentium.

CASM Documentation Page 2 of 31

My Motivations
I probably fall somewhere in the hacker / nostalgist range. I’ll be honest. I needed the as-

sembler to help me realize my childhood dream of writing a Commodore 64 video game. This is
really embarrassing.

New Features with Version 1.3
Version 1.3 has some significant improvements over Version 1.1b which was released ear-

lier this month. A binary bitmap feature has been added for DATA blocks which simplifies sprite
and character set storage. Most importantly, it runs a lot faster. I switched the data structures
over from doubly linked-lists to a fast hash / b-tree structure,1 and the tokenizer was completely
rewritten. And, of course, all of the annoying lock-ups were ironed out.

1 Unfortunately, this caused the undesirable side-effect that the block listings generated by CASM’s “/D” command-line option are sometimes out of
order, and the quirk probably won’t be fixed at least until the next release.

CASM Documentation Page 3 of 31

 INTRODUCTION

Just what is CASM?
CASM is a cross-assembler which runs on an IBM PC and generates code for a 6502

processor. While CASM is tailored for writing Commodore 64 programs, it should also work for
any 6502-based microcomputer, including the popular Apple II and Atari 800 systems.

The 6502 is a simple CPU, and the CASM language is likewise simple. This is not a bad
thing, however, because size and efficiency are primary considerations when writing anything seri-
ous for a 1MHz / 64K system, and fancy assembler features tend to remove important things like
clock cycles from the programmer’s thought process. Although Turbo Assembler shares many of
CASM’s features, it chokes up on large projects and is not recommended for the impatient. (Of
course these are limits of the hardware, and not the software.)

Many who (like myself) stood stalwartly by their ‘64 while their friends “sold out” to IBM
will probably object to the idea of a Commodore assembler for the IBM. But before you get too
worked up, play around with it a bit. Give it a chance. The CASM / emulator environment takes
a little getting used to, but for big projects,2 it is a major improvement. I’ve spent many long
hours punching code into the ole ‘64, and I know.

Using a Cross-assembler
Since CASM is a cross-assembler, the problem of how to run the output programs imme-

diately presents itself. There are three ways to do this. The easiest, and fastest, is to get one of
the popular emulators3 and run your programs on the PC. Once you get your code working,
though, you’ll want to see it run on the real thing. The simplest way to accomplish this is to up-
load the programs via modem to the Commodore 64. If you don’t have a Commodore modem
(or would like to wait less than an hour to see the results), most of the emulators will allow you to
connect a 1541 drive to your PC’s parallel port. This is much faster, but usually requires register-
ing the shareware.

2 In fact, CASM is conspicuously designed for large projects that would be unmanageable to code by hand.
3 I personally recommend C64S, written by Miha Peternel and distributed by Seattle Lab. A shareware version of C64S is available on the Seattle

Lab’s World Wide Web page at: http://www.seattlelab.com

CASM Documentation Page 4 of 31

 GENERAL SYNTAX
This section describes the basics of how the assembler reads text from a file. It explains

the syntax for comments, numbers, and text strings, and defines some terms that will be used in
the rest of the manual.

The Tokenizer Preprocesses .ASM Files
CASM is presented with an .ASM file to assemble. At the lowest level, CASM sees this

file as a collection of tokens separated by “whitespace” (spaces, tabs, etc.). The rules for what
make up a “token” are primarily an implementation detail, but it is important to note that the intel-
ligent portion of the assembler — the portion which will be communicating error messages —
cannot see the carriage returns, comments, or file boundaries. Another portion, the “tokenizer”
part, is what parses the .ASM file and hands the tokens (and corresponding source filename / line
number) up to the actual assembler. So when an error is reported on a certain file or line, the er-
ror is often in the vicinity of that line.

Line and Block Comments
Both line comments and block comments (informational notes which are invisible to the

assembler) may be placed in the .ASM file. Any time a semicolon(;) followed directly by a hy-
phen(-) is encountered in the file, the tokenizer ignores everything until the next hyphen-
semicolon pair. If the initial semicolon is not followed directly by a hyphen, everything until the
next carriage return is skipped. For example:

;-
 Here is a block comment,
 which can span multiple lines.
-;

ldx #$00
sta $0400,x ; this is a line comment
dex

;---;
; Programmers often do artistic things like this. ;
;---;

Case Sensitivity
It should be noted that the assembler is case-insensitive. For example, CASM will not dis-

tinguish between the identifiers “MainProgram” and “mainprogram”.

CASM Documentation Page 5 of 31

Number Formats
CASM recognizes 8-bit numbers (“bytes”) and 16-bit numbers (“words”). These numbers

may be presented in binary, decimal, hexadecimal, or as an ASCII / screen code character.

Binary

Binary numbers are preceded by a percent sign(%). A binary byte is composed of eight
ones and zeros written with out spaces between the digits (e.g. “%11001101”). A binary word
is a binary byte followed by a period(.) and then another eight ones and zeros
(e.g. “%11001101.01101101”).

Decimal

Decimal bytes can range from 0 to 255, written with out spaces between the digits. Deci-
mal words can range from 0 to 65535. Words less than 256 should be padded with leading zeros
to make four digits. (e.g. “0014” is a decimal word, but “254” is a decimal byte.)

Hexadecimal

Hexadecimal numbers are preceded by a dollar sign($), and are composed of the digits
0-9 and a-f or A-F. (CASM is case-insensitive.) For example, “$1A” would be a hexadecimal
byte, and “$FFC2” would be a hexadecimal word.

ASCII / Screen Code Characters

A byte may also be presented as a single ASCII or screen code character. The character
will be interpreted as a byte with the value of its corresponding ASCII / screen code value (see the
next section, Text String Formats). ASCII characters are placed in double quotes("), and screen
codes are placed in single quotes('). Here are two examples:

lda #"A"
jsr $ffd2 ; write the ASCII letter "A" using kernel routine

lda #'a'
sta $0400 ; store the screen code for 'a' in the video memory

It is legal to enclose a single quote in single quotes (e.g. “ lda #''' ”) or a double quote in
double quotes (e.g. “ lda #""" ”) when it represents a byte in a SUB; however, this is illegal
with strings in a DATA block (e.g. “ 'Here's a problem' ”).

Text String Formats
CASM distinguishes two types of text strings. ASCII4 text is what is used by BASIC

strings and the kernel routines. It supports control codes for clearing the screen, changing colors,
etc. Screen codes are used in the video buffer, and each code corresponds directly to an element

4 Actually, the Commodore has its own “PET-ASCII,” which differs somewhat from standard ASCII. At the moment, CASM interprets
double-quoted strings as standard ASCII text, which works for the most part. In practice, assembly language programs almost always use screen
codes.

CASM Documentation Page 6 of 31

of the current character set. In CASM, ASCII text strings are enclosed in double quotes("), and
screen codes are enclosed in single quotes(').

Since the IBM keyboard is not capable of creating all of the Commodore’s graphics sym-
bols, only a subset of the screen codes are possible in single quotes. (The others can be specified
as numbers or with aliases.) The numerical digits 0-9 and alphabetical characters a-z and A-Z are
converted to their expected screen codes, as are the following symbols:
@[]!#$%&\()*+,-./:;<=>? . The Table 2-1 lists the unusual IBM symbols which are
mapped to Commodore symbols. Any other IBM characters are converted to their ASCII
equivalents.

IBM C64 Hex
\ British pound 1C

^ up arrow 1E

` left arrow 1F

| vertical line 5D

~ overscore 63

_ underscore 64

Table 1-1: Screen Code Equivalents

Identifiers
“Identifiers” are used for SUB, DATA, and LAYOUT section names, aliases, and line labels.

They must start with an alphabetical character or underscore(_) and the following characters can
be alphabetical characters, underscores, or numerical digits. Identifiers are limited in length to 32
characters.

CASM Documentation Page 7 of 31

 THE ASSEMBLER
This section describes the higher-level aspects of the CASM language. .ASM files are

made up of four general components:

byte- and word-sized aliases

SUB blocks

DATA blocks

a LAYOUT section

All are optional except the LAYOUT section, which is mandatory and which must come
first in the file. These four components will be explained in order.

Aliases
Aliases are identifiers which can represent an 8-bit number (byte) or 16-bit number

(word). When used in a SUB or DATA block, an alias behaves as if the number the alias repre-
sents were inserted in place of the identifier.

Aliases can only be defined outside of SUB and DATA blocks, and must appear before the
blocks that use them. Thus, they are usually placed at the beginning, immediately after the
LAYOUT section. A byte alias is defined with the keyword ALIASB followed by the identifier, an
equals sign(=) and an 8-bit number (in hexadecimal, decimal, or binary) or ASCII character or
screen code. Here are some examples:5

ALIASB Byte = 123
ALIASW WriteChar = $FFD2
ALIASB ASCIICode = "a"
ALIASW BinaryNum = %00001111.00001111

An alias is used in a SUB and DATA block as if it were the number. For example:

lda #ASCIICode ; put "a" in the accumulator
jsr WriteChar ; use kernel routine to write it

SUB Blocks
SUB blocks are probably the most commonly used blocks. They begin with the keyword

SUB followed by an identifier, a list of assembly language instructions and line label definitions,
and are terminated with the keyword ENDS. While SUB blocks are typically used to define sub-
routines, remember that the “return from subroutine” (RTS) instruction is not automatically
appended.

5 Note: The examples given in this section will not assemble without the proper LAYOUT sections.

CASM Documentation Page 8 of 31

The standard 6502 instruction set6 is supported with the usual mnemonics, except that
when operating on the accumulator, ASL, LSR, ROL, and ROR must be followed with the pa-
rameter “ACC”. Also, the dummy instructions DAT and DATW direct the assembler to store their
parameter, a byte or word respectively, at that location. For compatibility with Turbo Assembler,
BYT is a synonym for DAT.

Line Labels

Line labels are defined by placing the identifier followed by a colon where an instruction
would normally start. For example:

ALIASW JoystickPort1 = $DC00

SUB TestSub
lda JoystickPort1
lsr acc ; test for up
bcs NotUp
dec $d001 ; move sprite up

NotUp:
lsr acc ; test for down
bcs NotDown
inc $d001 ; move sprite down

NotDown:
dat $60 ; fancy way of writing "rts", since $60

; is the assembled code for "rts"
ENDS

Line labels are local to the block in which they are defined so that label names may be re-
used in other blocks. To access a label in another block, preface the label with the name of the
block in which the label is defined, followed by the pipe symbol(|). Block names may also be
used as labels, and refer as such to the beginning of that block. For example:

SUB Test1
lda #$00

label: rts
ENDS

SUB Test2
jsr Test1 ; jsr to the first line of Test1
jmp Test1|label ; jmp to the second line of Test1

ENDS

Address Arithmetic

Advanced programs often need to access high or low bytes of label addresses or offsets
from labels. CASM supports four operators for calculating these: +, -, <, and >.

< or > can come immediately after any instruction that takes a word as a parameter. <
takes the LSB and > takes the MSB. For example:

lda <$1234 ; same as lda $12
lda #>$1234 ; same as lda #$34

6 Support for the nonstandard instructions (e.g. SLO) may be included in a later version, if someone would like to take the liberty of typing them up
in a table like the one in Appendix B and sending them to me.

CASM Documentation Page 9 of 31

Here is a common usage:

ALIASW ScreenStart = $0400 ; Start of the text screen memory

SUB ClearScreen
lda #<ScreenStart
sta $fb
lda #>ScreenStart
sta $fc

lda #'a'
ldy #$00
sta ($fb),y

ENDS

Which would be assembled (with the proper LAYOUT section) to this:

LDA #$00
STA $FB
LDA #$04
STA $FC
LDA $01
LDY #$00
STA ($FB),Y

The + and - operators are used to calculate offsets from a label, as well as to perform simple
arithmetic. They may be used with either aliases or numeric constants, but if a label is present, it
must come first. For example:

lda #$23 + 1
lda #'z' - 'a' + 1
sta alias + 1
sta <$1000 + $123 - %00000010
jmp label3 - 2

Or, more practically, something like this:

lda <label + alias - 1
sta $fb
lda >label + alias - 1
sta $fc

DATA Blocks
DATA blocks are similar to SUB blocks, but are used to store everything besides program

code. They are typically used for text messages, sprites, character sets, and tables. A DATA
block begins with the keyword DATA, followed by an identifier, a list of bytes, words, text strings,
“binary bitmaps”, labels, and label references, and it is terminated with the keyword ENDD.

Bytes, Words, and Text Strings

The bytes and words can be in any base. Note that words are stored in the regular “little-
endian” form, with LSB before MSB. Here is an example:

CASM Documentation Page 10 of 31

DATA TestData
1 ; decimal byte
$02 ; hexadecimal byte
%00000011 ; binary byte

1284 ; decimal word
$0706 ; hexadecimal word
%00001001.00001000 ; binary word

"Hello" ; ASCII string
'Hello' ; Screen string

ENDD

From the above, CASM would produce:

$0000: $01 $02 $03 $04 $05 $06 $07 $08
$0008: $09 $48 $65 $6C $6C $6F $48 $05
$0010: $0C $0C $0F

Binary Bitmaps

Binary bitmaps are a new feature with CASM Version 1.3. They simplify the storage of
character sets, sprites, and other binary-encoded graphic images. Between two brackets ([,]),
any multiple of eight bits may be entered. (The brackets are required to make it easier to track
down missing or extraneous bits in large bitmaps.) An “off” bit is represented with a period(.),
and an “on” bit with x, X, or an asterisk(*). (The three options are provided to allow for different
editor fonts and user preferences.) The assembler then combines every eight successive bits into a
binary byte and stores it.

For example,

DATA TestChar
[.XXXXXX.]
[X......X]
[X.X..X.X]
[X......X]
[X.XXXX.X]
[X..XX..X]
[X......X]
[.XXXXXX.]

; a label definition (see next section)
ColorField:

[****....****....****....] 0
ENDD

This would be assembled to produce:

$0000: $7E $81 $A5 $81 $BD $99 $81 $7E
$0008: $F0 $F0 $F0 $00

Labels and Label References

Labels are defined within DATA blocks just as they are in SUB blocks: the label name is
given followed by a colon(:), as in the above example. Label references are made simply by en-
tering the name of the label. The actual address of the label is then stored as a word in little-

CASM Documentation Page 11 of 31

endian form. For example, if placed at $0801, this DATA block would generate the BASIC code
to jump to the hexadecimal address $0810:

DATA SysStart

; This generates a BASIC stub to run the program. It should go at the
; beginning of the LAYOUT block, and the load address should be $0801.
; The start address for the program should be $0810.

; The BASIC program is "1995 SYS(2064)"

EndOfLine ; pointer to where next BASIC line begins
1995 ; line number
$9E ; BASIC "SYS" instruction
"(2064)"
0 ; End of line

EndOfLine:
0 0 ; End of BASIC program

ENDD

With the appropriate LAYOUT section, the assembler would generate the following bytes. Note
that the address of the label EndOfLine ($080D) is stored in the file where the label is
referenced.

$0801: $0D $08 $CB $07 $9E $28 $32 $30
$0809: $36 $34 $29 $00 $00 $00

The LAYOUT Section
As may be apparent by now, the LAYOUT section appears first in the file, and determines

the placement of the blocks in the final object code. It begins with the keyword LAYOUT, con-
tains a listing of blocks, and ends with the ENDL keyword. The first block in the list must be pre-
ceded by the actual address where it will start (in decimal or hexadecimal), which will become the
load address for the file. The remaining blocks may optionally have start addresses, any extra in-
termediate space will be filled with zeros. No block may appear twice in the LAYOUT section.

CASM Documentation Page 12 of 31

Here is a small example:

LAYOUT
$0800: Data2 ; $0800 becomes the load address for program

Code1
$0808: Data3 ; optional address $0808
ENDL

SUB Code1
dat 1
dat 2
dat 3

ENDS

DATA Data2
4 5 6

ENDD

DATA Data3
7 8 9

ENDD

And here is the assembler output (note the zero-fill up to $0808):

$0800: $04 $05 $06 $01 $02 $03 $00 $00
$0808: $07 $08 $09

Appendix A contains the complete listing of a real program written with CASM.

CASM Documentation Page 13 of 31

 OTHER FEATURES

Creating Libraries
The tokenizer also understands a directive which enables the programmer to create librar-

ies of routines to be shared by separate projects. When the tokenizer encounters the at-sign(@), it
reads the following filename and then opens the corresponding .LIB file and begins reading tokens
from it. For example, consider the following code:

LAYOUT
$0801: SYSStart ; BASIC "SYS(2064)" start

MainPrg
$2000: SpriteData
ENDL

@SOUND ; Use the SOUND library

DATA SYSStart
 .
 .
 .

When the tokenizer reaches the “@SOUND” directive, it will attempt to open a file called
SOUND.LIB. To the assembler, it will appear as if the contents of SOUND.LIB had been pasted
into the .ASM file at that point. Hence, .LIB files cannot contain LAYOUT sections. (This is the
justification for the .LIB file extension.)

.LIB files may include other .LIB files with the @ directive; however, no special provision
has been made for recursion, so never allow a .LIB file to directly or indirectly reference itself.
With the DOS SHARE.EXE loaded, this will give you an "Unable to open file" error. Without
SHARE.EXE, CASM will most likely run out of memory or lock up.

Most beginning programmers don’t use libraries, but as you find yourself repeatedly writ-
ing certain routines over and over again, you’ll probably start thinking about putting together a li-
brary. The library feature is particularly attractive because CASM only assembles the routines
you reference in the LAYOUT section. In contrast, many other assemblers just copy the entire li-
brary, which is fast but wasteful. In addition, CASM’s approach also allows the programmer to
choose the order in which the routines are placed.

In practice, CASM’s library feature is most useful for creating large collections of aliases,
such as VIC chip or SID chip addresses.

CASM Documentation Page 14 of 31

 THE UTILITIES
CASM comes with three supporting utilities:

CDASM.EXE - a disassembler which can convert executable programs back into CASM
source code

CDUMP.EXE - a dump utility which can display data in a variety of formats

CLINK.EXE - a multi-module linker, which can be used to modularize large programs

This section explains the command-line options for CASM and these utilities.

CASM <SourceFile> [/D] [/N] [/Q]

CASM.EXE assembles <SourceFile> which contains the source code, and generates a corre-
sponding .PRG file containing the executable code. If the file extension for <SourceFile> is
omitted, it is assumed to be .ASM.

The following command-line options are available:

Option Description
/D Requests an accompanying disassembly showing the blocks that were as-

sembled. This is useful for debugging, large projects, since it shows where
the SUB and DATA blocks begin and end.

/N Prevents the load address from being stored at the beginning of the file.
Commodore 64 disk drives store the load address of a program as the first
two bytes of the file. Other 6502-based systems may not adhere to this
format.

/Q Runs CASM in “quiet” mode, where less text is displayed on the screen.
This is used when CLINK.EXE runs CASM.EXE.

Table 1-2: CASM.EXE Command-line Options

CASM Documentation Page 15 of 31

CDASM <SourceFile> [/A] [/B] [/L] [/N] [/R]

CDASM.EXE disassembles a <SourceFile>, writing the output to the screen. (If no file ex-
tension is given, .PRG is assumed.) The screen output may be redirected using the regular DOS
redirection operators. For example, to disassemble the file GAME.PRG with labels and store the
output in the file GAME.ASM, one might type the following:

CDASM GAME.PRG /L > GAME.ASM

The following command-line options are available:

Option Description
/A Shows the hexadecimal address of every line as a comment to the left of

the disassembly.
/B Shows original bytes that were disassembled. The bytes are listed in hexa-

decimal as comments to the right of the disassembly.
/L Creates line labels for addresses within the file. This is probably the most

useful feature of the disassembler. Labels are not generated for addresses
that fall in the middle of an instruction.

/N Indicates no load address stored at beginning of file. Normally the first
two bytes of the file would contain the load address of the file, but with /N
they are treated as normal code.

/R Inserts a LAYOUT section, so the output may be re-assembled with CASM.

Table 1-3: CDASM.EXE Command-line Options

CASM Documentation Page 16 of 31

CDUMP <SourceFile> [/A] [/B#] [/D] [/N] [/X[,YY]]

 CDUMP.EXE displays the contents of a file to the screen as a listing of bytes. By default,
the output is shown in rows of 8 hexadecimal numbers. The following command-line options are
available to change the format of the output:

Option Description
/A Shows addresses for each line to the left of the dump.
/B# Shows the dump as binary bitmaps rather than hexadecimal numbers. “#”

tells which symbol is to be used for “on” bits, and can be “*”, “x”, or “X”
By default, eight bytes are shown per line.

/D Shows the numbers in decimal instead of hexadecimal.
/N Indicates no load address stored in file.
/X,YY This can be used with the /B# option. “X” is a digit between 1 and 9 which

tells how many bytes are displayed per line. The optional “YY” specifies can
be any number from 1 to 99, and tells how many lines should be in each
block. Blocks will be separated by blank lines.

Table 1-4: CDUMP.EXE Command-line Options

CASM Documentation Page 17 of 31

CLINK <ListFile> [/U|/C]

 CLINK.EXE pastes together a set of files according to the specifications given in
<ListFile> and stores the result in a .PRG file with the same name as the list file. (If no file-
name extension is given for the list file, .LST is assumed.)

Option Description
/U This parameter reverses the process, generating the small files specified in

the .LST file from the .PRG file. This is can be used to break an old pro-
ject apart into modules.

/C The “/C” parameter runs CASM on the .ASM files whose dates/time are
earlier than that of the corresponding .PRG files. This can be used to re-
assemble only those files which have been modified. It is similar to what
programs like MAKE do.

Table 1-5: CLINK.EXE Command-line Options

Here is an example list file called TEST.LST:

$1000 ; Load address of TEST.PRG
FILE1.PRG $1000 ; Start addresses of FILE1.PRG
FILE2.PRG $1500 ; FILE2.PRG starts $500 bytes later

The first address tells the load address of the final .PRG to be generated. Then follows a listing of
.PRG modules and the address were they should be placed. The FILE1.PRG is less than $500
bytes in size, the rest are zero-filled as necessary. The above .LST file would place FILE1.PRG
at the beginning of TEST.PRG, and then FILE2.PRG $500 bytes later.

CASM Documentation Page 18 of 31

Appendix A: A Sample Program

Here follows a sample program written with CASM. While the code is a bit sloppy in places, the
output is entertaining when run.7

;--;
; SPINNER - Pope
;
; This is a quick little program that spins the BASIC character set
; using the interrupt. It is included with CASM Version 1.3, available
; on the World Wide Web at http://www.cs.wm.edu/~pbgonz/progc64.html,
; or via Email to Lucas Pope <lupope@vt.edu>
;--;

;--;
LAYOUT
;--;
;
; The BASIC SYS start runs sSetup at $0810, which hooks the user interrupt
; to jump to sSpinner. Then control is returned to BASIC, and the
; interrupt takes over.

$0801: dSysStart ; BASIC start
$0810: sSetup ; intialization code

 sSpinner ; interrupt handler
 dProgVars ; program variables

ENDL

ALIASB CharBackColor = $00 ; color of character back
ALIASB CharFrontColor = $0e ; color of character front
ALIASB TurnPause = 05 ; pause while letters are turning
ALIASB FlatPause = 70 ; pause while letters are flat

ALIASB CountDown = $fd ; used as a timer

ALIASB Temp1 = $fb ; temporary variable 1
ALIASB Temp2 = $fe ; temporary variable 2

ALIASB Next = $fc ; stores the turn sequence of
; the chars

ALIASW kReturnFromInt = $ea81 ; some Kernel code that returns from
; an interrupt

;--;
DATA dProgVars
;--;
OldInterrupt:

0 0
ENDD

;--;
DATA dSysStart
;--;
;
; The BASIC program looks like this:
;
; 1995 SYS(2064)
;

 EndOfLine ; This will store the address of the label
 1995 ; This is a decimal word storing the line #

7 Peter Gonzalez neither authored this example program nor claims responsibility for its poor readability.

CASM Documentation Page 19 of 31

 $9E ; Basic "SYS" instruction
 "(2064)" ; hex address $0810
 0 ; end of BASIC line

EndOfLine:
 0 0 ; end of BASIC program

ENDD

;--;
SUB sSetup
;--;
; sSetup performs the program initialization, hooks the user interrupt, and
; then returns control to BASIC.

Start: sei
lda $0001

 and #$fb
 sta $0001
 ldx #$00
 ldy #$08

Copy1: lda $d000,x ; copying the ROM char mem to 3000 and 2800
sta $3000,x
sta $2800,x
lda $d100,x
sta $2900,x
sta $3100,x
dex
bne Copy1

lda $0001
ora #$04
sta $0001

ldx #$06
lda #$08 ; creates the blinking cursor picture, which

; will be a vertical line
Cursor: sta $2d00,x

dex
bpl Cursor

ldx #$00
Flip: lda $3000,x ; flipping chars at 3000 and putting them

lsr acc ; at 3800
rol Temp1
lsr acc
rol Temp1
lsr acc
rol Temp1
lsr acc
rol Temp1
lsr acc
rol Temp1
lsr acc
rol Temp1
lsr acc
rol Temp1
lsr acc

 rol Temp1
 lda Temp1
 sta $3800,x
 lda $3100,x
 lsr acc
 rol Temp1
 lsr acc
 rol Temp1
 lsr acc
 rol Temp1
 lsr acc

CASM Documentation Page 20 of 31

 rol Temp1
 lsr acc
 rol Temp1
 lsr acc
 rol Temp1
 lsr acc
 rol Temp1
 lsr acc
 rol Temp1
 lda Temp1
 sta $3900,x
 dex
 bne Flip

; Make sure the routine is not already running:

 lda dProgVars|OldInterrupt
 cmp #$00
 beq NotLoadedYet
 lda dProgVars|OldInterrupt + 1
 cmp #$00
 beq NotLoadedYet

 cli
 rts ; return to basic

NotLoadedYet:

 lda $0314 ; Save the old interrupt:
 sta dProgVars|OldInterrupt
 lda $0315
 sta dProgVars|OldInterrupt + 1

 lda #<sSpinner|Start ; Set user interrupt to vector through
 sta $0314 ; the sSpinner subroutine:
 lda #>sSpinner|Start
 sta $0315

 lda #$00
 sta Next
 lda #$1b
 sta $d018
 lda #FlatPause
 sta CountDown

 cli
 rts ; return to basic

ENDS

;--;
SUB sSpinner
;--;
;
; This is just a lot of bit flipping. I sacrificed some readability to
; have the demo program do something worth seeing.
;

Start: sei
 dec CountDown
 bne GoOn ; jump to normal interrupt if CountDown <> 0
 lda #TurnPause
 sta CountDown

 inc Next

 lda Next ; determines which part of the turn the
 cmp #$04 ; characters are currently in

CASM Documentation Page 21 of 31

 beq ToBlack
 bcc Go5
 cmp #$05
 beq Go1
 cmp #$06
 beq Go2
 cmp #$07
 beq Flip
 cmp #$0b
 beq ToBlue
 bcc Go5
 cmp #$0c
 beq Go3
 cmp #$0d
 beq Go4

 lda #$00
 sta Next
 jmp norm

Go1: jmp eflip1 ; jmp reaches for the branches above
Go2: jmp eflip2
Go3: jmp enorm1
Go4: jmp enorm2
Go5: jmp squish
GoOn: jmp (dProgVars|OldInterrupt)

ToBlack: ldx #$f9
 lda #CharBackColor
 sta $0286 ; changes the color to CharBackColor

Loop1: sta $d800,x
 sta $d8fa,x
 sta $d9f4,x
 sta $daee,x
 dex
 cpx #$ff
 bne Loop1
 jmp kReturnFromInt

ToBlue: ldx #$f9
 lda #CharFrontColor
 sta $0286 ; changes the color to CharFrontColor

Loop2: sta $d800,x
 sta $d8fa,x
 sta $d9f4,x
 sta $daee,x

dex
 cpx #$ff
 bne Loop2
 jmp kReturnFromInt

norm: lda #FlatPause
 sta CountDown
 ldx #$00

dooper: lda $3000,x ; copies norm chars into visible
 sta $2800,x
 lda $3100,x
 sta $2900,x
 dex
 bne dooper
 jmp kReturnFromInt

Flip: lda #FlatPause
 sta CountDown
 ldx #$00

dooper2: lda $3800,x ; copies flipped chars into visible
 sta $2800,x

lda $3900,x

CASM Documentation Page 22 of 31

 sta $2900,x
dex

 bne dooper2
 jmp kReturnFromInt

; squishes the visible characters
squish: ldx #$00
sqshmore:

lda $2800,x
tay
and #$08
sta Temp2
tya
asl acc
and #$0f
sta Temp1

 tya
 lsr acc
 and #$f0
 ora Temp1
 ora Temp2
 sta $2800,x
 lda $2900,x
 tay
 and #$08
 sta Temp2
 tya
 asl acc
 and #$0f
 sta Temp1
 tya
 lsr acc
 and #$f0
 ora Temp1
 ora Temp2
 sta $2900,x
 dex
 bne sqshmore
 jmp kReturnFromInt

enorm1: ldx #$00 ; copies normal chars into view, squishing
LoopA: lda $3000,x ; them at the same time (squishes less

tay ; every time) to make them appear to expand
 and #$08
 sta Temp2
 tya
 asl acc
 asl acc
 and #$0f
 sta Temp1
 tya
 lsr acc
 lsr acc
 and #$f0
 ora Temp1
 ora Temp2
 sta $2800,x
 lda $3100,x
 tay
 and #$08
 sta Temp2
 tya
 asl acc
 asl acc
 and #$0f
 sta Temp1
 tya
 lsr acc
 lsr acc

CASM Documentation Page 23 of 31

 and #$f0
 ora Temp1
 ora Temp2
 sta $2900,x
 dex
 bne LoopA
 jmp kReturnFromInt

enorm2: ldx #$00 ; same as above only expands less
LoopB: lda $3000,x

 tay
 and #$08
 sta Temp2
 tya
 asl acc
 and #$0f
 sta Temp1
 tya
 lsr acc
 and #$f0
 ora Temp1
 ora Temp2
 sta $2800,x
 lda $3100,x
 tay
 and #$08
 sta Temp2
 tya
 asl acc
 and #$0f
 sta Temp1
 tya
 lsr acc
 and #$f0
 ora Temp1
 ora Temp2
 sta $2900,x
 dex
 bne LoopB
 jmp kReturnFromInt

eflip1: ldx #$00 ; copies flipped characters into view
LoopC: lda $3800,x ; "squishing" them at the same time
 tay
 and #$08

sta Temp2
 tya

asl acc
 asl acc

and #$0f
sta Temp1
tya
lsr acc
lsr acc

 and #$f0
 ora Temp1
 ora Temp2

 sta $2800,x
 lda $3900,x
 tay
 and #$08

 sta Temp2
 tya
 asl acc

asl acc
 and #$0f

sta Temp1
 tya

CASM Documentation Page 24 of 31

 lsr acc
 lsr acc
 and #$f0
 ora Temp1
 ora Temp2
 sta $2900,x
 dex
 bne LoopC
 jmp kReturnFromInt

eflip2: ldx #$00 ; same as above only less
LoopD: lda $3800,x

tay
and #$08

 sta Temp2
 tya

 asl acc
 and #$0f
 sta Temp1

tya
lsr acc
and #$f0
ora Temp1
ora Temp2
sta $2800,x
lda $3900,x
tay
and #$08
sta Temp2
tya
asl acc
and #$0f
sta Temp1
tya
lsr acc
and #$f0
ora Temp1
ora Temp2
sta $2900,x
dex
bne LoopD
jmp kReturnFromInt

ENDS

CASM Documentation Page 25 of 31

Appendix B: Recognized 6502 Instructions

The following table lists the 6502 instructions supported by CASM.

CodeCode Instr.Instr. Parm.Parm. CodeCode Instr.Instr. Parm.Parm. CodeCode Instr.Instr. Parm.Parm. CodeCode Instr.Instr.
 00 BRK 01 ORA ($00,X) 02 --- 03 ---

 04 --- 05 ORA $00 06 ASL $00 07 ---

 08 PHP 09 ORA #$00 0A ASL ACC 0B ---

 0C --- 0D ORA $0000 0E ASL $0000 0F ---

 10 BPL $NEAR 11 ORA ($00),Y 12 --- 13 ---

 14 --- 15 ORA $00,X 16 ASL $00,X 17 ---

 18 CLC 19 ORA $0000,Y 1A --- 1B ---

 1C --- 1D ORA $0000,X 1E ASL $0000,X 1F ---

 20 JSR $0000 21 AND ($00,X) 22 --- 23 ---

 24 BIT $00 25 AND $00 26 ROL $00 27 ---

 28 PLP 29 AND #$00 2A ROL ACC 2B ---

 2C BIT $0000 2D AND $0000 2E ROL $0000 2F ---

 30 BMI $NEAR 31 AND ($00),Y 32 --- 33 ---

 34 --- 35 AND $00,X 36 ROL $00,X 37 ---

 38 SEC 39 AND $0000,Y 3A --- 3B ---

 3C --- 3D AND $0000,X 3E ROL $0000,X 3F ---

 40 RTI 41 EOR ($00,X) 42 --- 43 ---

 44 --- 45 EOR $00 46 LSR $00 47 ---

 48 PHA 49 EOR #$00 4A LSR ACC 4B ---

 4C JMP $0000 4D EOR $0000 4E LSR $0000 4F ---

 50 BVC $NEAR 51 EOR ($00),Y 52 --- 53 ---

 54 --- 55 EOR $00,X 56 LSR $00,X 57 ---

 58 CLI 59 EOR $0000,Y 5A --- 5B ---

 5C --- 5D EOR $0000,X 5E LSR $0000,X 5F ---

 60 RTS 61 ADC ($00,X) 62 --- 63 ---

 64 --- 65 ADC $00 66 ROR $00 67 ---

 68 PLA 69 ADC #$00 6A ROR ACC 6B ---

 6C JMP ($0000) 6D ADC $0000 6E ROR $0000 6F ---

 70 BVS $NEAR 71 ADC ($00),Y 72 --- 73 ---

 74 --- 75 ADC $00,X 76 ROR $00,X 77 ---

 78 SEI 79 ADC $0000,Y 7A --- 7B ---

 7C --- 7D ADC $0000,X 7E ROR $0000,X 7F ---

CASM Documentation Page 26 of 31

 80 --- 81 STA ($00,X) 82 --- 83 ---

 84 STY $00 85 STA $00 86 STX $00 87 ---

 88 DEY 89 --- 8A TXA 8B ---

 8C STY $0000 8D STA $0000 8E STX $0000 8F ---

 90 BCC $NEAR 91 STA ($00),Y 92 --- 93 ---

 94 STY $00,X 95 STA $00,X 96 STX $00,Y 97 ---

 98 TYA 99 STA $0000,Y 9A TXS 9B ---

 9C --- 9D STA $0000,X 9E --- 9F ---

 A0 LDY #$00 A1 LDA ($00,X) A2 LDX #$00 A3 ---

 A4 LDY $00 A5 LDA $00 A6 LDX $00 A7 ---

 A8 TAY A9 LDA #$00 AA TAX AB ---

 AC LDY $0000 AD LDA $0000 AE LDX $0000 AF ---

 B0 BCS $NEAR B1 LDA ($00),Y B2 --- B3 ---

 B4 LDY $00,X B5 LDA $00,X B6 LDX $00,Y B7 ---

 B8 CLV B9 LDA $0000,Y BA TSX BB ---

 BC LDY $0000,X BD LDA $0000,X BE LDX $0000,Y BF ---

 C0 CPY #$00 C1 CMP ($00,X) C2 --- C3 ---

 C4 CPY $00 C5 CMP $00 C6 DEC $00 C7 ---

 C8 INY C9 CMP #$00 CA DEX CB ---

 CC CPY $0000 CD CMP $0000 CE DEC $0000 CF ---

 D0 BNE $NEAR D1 CMP ($00),Y D2 --- D3 ---

 D4 --- D5 CMP $00,X D6 DEC $00,X D7 ---

 D8 CLD D9 CMP $0000,Y DA --- DB ---

 DC --- DD CMP $0000,X DE DEC $0000,X DF ---

 E0 CPX #$00 E1 SBC ($00,X) E2 --- E3 ---

 E4 CPX $00 E5 SBC $00 E6 INC $00 E7 ---

 E8 INX E9 SBC #$00 EA NOP EB ---

 EC CPX $0000 ED SBC $0000 EE INC $0000 EF ---

 F0 BEQ $NEAR F1 SBC ($00),Y F2 --- F3 ---

 F4 --- F5 SBC $00,X F6 INC $00,X F7 ---

 F8 SED F9 SBC $0000,Y FA --- FB ---

 FC --- FD SBC $0000,X FE INC $0000,X FF ---

CASM Documentation Page 27 of 31

Appendix C: Distribution and Modification

 CASM and its supporting files CDASM, CLINK, and CDUMP are freeware. This means
that they may be copied and distributed freely, provided that they are not modified and no fee is
charged. The source code is available only directly through the author, and may not be distrib-
uted in any other way. You may contact me via e-mail at:

Peter Gonzalez <pbgonz@mail.wm.edu>

or download any new versions from my World Wide Web page at:

http://www.cs.wm.edu/~pbgonz/progc64.html

You are also encouraged to send me e-mail if you are missing some files, would like to re-
port a bug, or have any comments/feedback. In fact, user feedback is probably the only force
which will motivate me to distribute further improvements. �

Always give people credit for their own work, and support freeware!

CASM Documentation Page 28 of 31

NOTES

CASM Documentation Page 29 of 31

NOTES

CASM Documentation Page 30 of 31

NOTES

CASM Documentation Page 31 of 31

