% &
‘%6/)c/r
’7/ -~ - \%

— %

DL -
5 \‘i
=
X @

Habitat Technology Transfer Seminar

Lucasfilm --> Fujitsu

B 08 A‘SZAmer\ \nc
r “‘S%rcha‘%or\ £134-2017
C

14T 1S -
#ﬂﬁwl’maf—ﬁ}u&b GWE' fww{ /

K» F«\/kwdﬁ, :'g

8 gb h
z Ly
/(e ”7% //o(_' ~ § hl
/,'('\4 Q/, QSQ, N
AP SN Skywalker Ranch
< %‘4 _ Marin County, California
¢ -
%
S % Monday, August 21, 1988
through
Friday, August 25, 1988 (l

Thauke gour
BN R M3 WA =

| {
\1‘2 %‘ /(% ’%\ \:P o.c;;

Lucasfilm = Fujitsu
Habitat Technology Transfer Seminar

e Preliminaries

e Overview of Habitat
 Supporting technology
 Habitat technology

e Operations

1.intro.1 (1)

Lucasfilm = Fujitsu
Habitat Technology Transfer Seminar

 Preliminaries

e Overview of Habitat

» Supporting technology
* Habitat technology
 Operations

; i R . J

1.intro.2 (2)

Preliminaries

 Introductions: everybody meets everybody
* Seminar agenda
« Some notes on our style of presentation

1.intro.3 (3)

Seminar Agenda

 Preliminaries
» Overview of Habitat
 Supporting technology
Commodore 64 system
Stratus host system
Unix development system
 Habitat technology
How the system was specified
Description of communications protocol
C64 system
Host system
Development system
The Habitat world database
 Operations
Support personnel
Day-to-day operations
Creating new experiences
Rules, policies, and laws

1.intro.4 (4)

r

Some notes on our style of presentation

* Questions welcome at all times

 Plenty slack time for unanticipated things

» Some general issues to keep in mind:
Technical differences: Habitat on Fujitsu 386 vs. Commodore 64
Technical differences: Fujitsu host vs. Quantum’s Stratus host
Cultural differences: Japan Habitat vs. U.S. Habitat

_

1.intro.5 (5)

Lucasfilm = Fujitsu
Habitat Technology Transfer Seminar

e Preliminaries

e Overview of Habitat

» Supporting technology
* Habitat technology

» Operations

2.overview.01 (8)

Overview of Habitat

» Multi-player shared universe
* Distributed telecommunications game
* Built around a few fundamental concepts

« Simple and direct user interface l

user manual

2.overview.02 (7)

7

Multi-player shared universe

* An imaginary world...
« ...inhabited by real people...
* ...who enter it via their home computers

2.overview.03 (8)

r

Distributed telecommunications game

» Home PC handles
Graphics
User interface
Data-intensive operations

» Network host handles
Large, expanding world database
Coordination of multiple players
Player-to-player communications

~

2.overview.04 (9)

»
Built around a few fundamental concepts

¢ Avatars
Ghosts

* Objects

* Regions
“Turf”
Realms

e The Oracle

» Hall of Records

2.overview.05 (10)

Avatars

2.overview.06 (11)

The Oracle

2.overview.07 (12)

-

Simple and direct user interface

» Joystick command verbs
» Talking
ESP
e Gesture keys
« Function keys

~

2.overview.08 (13)

r

Joystick command verbs

GO

I
PUT 4—(O)—> GET
\r

DO

_

2.0verview.09 (14)

\\

Gesture keys

CTRL-1 — wave hand

e CTRL-2 — point
e CTRL-3 — palms up
e CTRL-4 — jump

» CTRL-5 — face forward
* CTRL-6 — face backward
« CTRL-7 — bend over

e CTRL-8 — stand up

» CTRL-9 — punch
 CTRL-0 — frown

2.overview.10 (15)

Function keys

F1 — ghost/de-ghost

F2 — toggle region transition music
F3 — list some online Avatars

F6 — change flesh color

e F7 — get help information

o SHIFT-RUN/STOP — exit Habitat

\—

2.overview.11 (16)

I

Overview of Habitat, cont'd.

» Common, important object classes
« Other notable object classes

» The Habitat world

* Live demonstration
 Experiences operating Habitat

2.overview.12 (17)

r

Overview of Habitat, cont'd.

« Common, important object classes
 Other notable object classes

e The Habitat world

o Live demonstration

o Experiences operating Habitat

2.overview.13 (18)

r

Common, important object classes

* Avatar

» Heads

» Containers

» Paper
Mail

Books
« Tokens
e Magic items

object manual
2.overview.14 (19)

Heads

2.overview.15 (20)

Containers

2.overview.16 (21)

Paper and Books

2.overview.17 (22)

Tokens

2.overview.18 (23)

Magic items

2.overview.19 (24)

r

Overview of Habitat, cont'd.

e Common, important object classes
 Other notable object classes

e The Habitat world

» Live demonstration

» Experiences operating Habitat

2.overview.20 (25)

-

Other notable object classes

» Teleport

* Vendroid

* Doors
 Escape device
» Fountain

* Scenery

« ATM

» Body Sprayer
 Etc.

2.overview.21 (26)

Vendroid

Doors Escape Device

i

ATM Body Sprayer

2.overview.22 (27)

Scenery

2.overview.23 (28)

r

Overview of Habitat, cont'd.

« Common, important object classes
e Other notable object classes

» The Habitat world

e Live demonstration

» Experiences operating Habitat

2.overview.24 (29)

—

The Habitat world

» The Habitat fantasy
Habitat mythos
The Oracle
* The world map
The geographic master plan
Cities, built and planned
- Populopolis
- Quantumgrad
- Other cities
Other realms

geographic plan doc

map
2.0verview.25 (30)

World Map

.overview.26 (31)

2

s

Overview of Habitat, cont'd.

o Common, important object classes
 Other notable object classes

» The Habitat world

 Live demonstration

» Experiences operating Habitat

2.overview.27 (32)

s

Live demonstration

\

2.0overview.28 (33)

e

Overview of Habitat, cont'd.

» Common, important object classes
» Other notable object classes

e The Habitat world

» Live demonstration
 Experiences operating Habitat

2.overview.29 (34)

7

Experiences operating Habitat

 Things to do
 Operational experience

2.overview.30 (35)

Things to do

* Games

» Sports

* Quests
Exploration
» Parties

* Hanging out
¢ Drama

» Business
 Politics
 Religion

* Sex

« “Events”

2.overview.31 (36)

()

Operational experience

» Alpha test

« Pilot test

* Player reactions
» Funny stories

—

anecdotes doc
2.overview.32 (37)

Lucasfilm = Fujitsu
Habitat Technology Transfer Seminar

e Preliminaries

e Overview of Habitat
 Supporting technology
» Habitat technology

» Operations

3.suptech.01 (38)

Supporting technology

e Commodore 64 system
e Stratus host system
* Unix development system

3.suptech.02 (39)

Ve

Commodore 64 system

e 6502 microprocessor

« C64 graphics

e C64 disk

» C64 telecommunications
» C64 sound

6502 book
3.suptech.04 (41)

C64 graphics

Numerous graphics modes

We use 160x128x2-bit mode graphics
Mode switching with scan-line interrupts
Weird color map

— J

3.suptech.05 (42)

Habitat/C64 Color Map

Color bit pairs 01,10,11 are defined on a CHARACTER cel (4x8 color pixels)

00->0xD020 [J

01 &10 -> 0x4400
(Text Ram)

The Screen

11 -> 0xD800
(Color Ram)

Bit pair 00 -> Background Color Register (0xd020), always BLUE
Bit pair 01 -> Low 8 bits from Text Ram, default 'skin color'

Bit pair 10 -> High 8 bits from Text Ram, default BLACK

Bit pair 11 -> Color Ram, colored when background is rendered

3.suptech.06 (43)

C64 disk

Slow, slow, slow

Smart drive, stupid drive software
» Reprogrammable drive

160K per disk side

“Tum the disk over”

— J

3.suptech.07 (44)

r

C64 telecommunications

» No hardware UART
e Interrupt on every bit
 Port interferes with everything

3.suptech.08 (45)

C64 sound

« ADSR square-wave generator
* 3-channels

3.suptech.09 (46)

Stratus host system

» System overview

e PL/1 programming environment
 Database filesystem

* Interprocess messages

3.suptech.11 (48)

System overview

High-reliability “non-stop” system

Transparent multiprocessors

Based on multiple redundant 68000 family CPUs
Proprietary operating system VOS

stratus overview manual
3.suptech.12 (49)

e

PL/1 programming environment

e PL/1 is the Stratus’ “native” language
* Pretty good optimizing compiler
¢ Rest of QuantumLink written in PL/1

stratus pl/1 manual
3.suptech.13 (50)

Database filesystem

« Fast indexed record access
« All database I/O provided by system calls
e “A blunt instrument”
Never use 1 system call when you can use 3...
...and never give it 3 parameters when you can give it 7

stratus system calls manual
3.suptech.14 (51)

Interprocess messages

» Supported by underlying operating system
» High-speed StratalLINK bus between processor modules
 Up to 256 processor modules in a system

-

3.suptech.15 (52)

-

Supporting technology

» Commodore 64 system
e Stratus host system
 Unix development system

3.suptech.16 (53)

s

Unix development system

» Unix software tools
C
yacc
lex
make
etc.
« Macross assembler
« Fastlink
Face

yacc, lex, make docs
macross/slinky doc
fastlink doc

face doc

3.suptech.17 (54)

Sample Macross code

lda contents_counter
clc
adc #OBJECT_contents
tay
lda y[@object_address] ; object contained?
if (lequal) {
sta contained object

ldy #0BJECT_class_pointer ; Variable trap object
lda y[@object_address]
cmp #class_glue
if (equal) |
lda contents_counter
asl a
clc
adc #OBJECT_contents+9 ; location of x/y data
tay
movew object_address,prop_address

} else {
lda contents_counter
asl a
clc
ldy #3 ; contents_xy table
adc y(@prop_address]
and #0x7f ; mask off high bit
tay ; draw before/after
}

lda cel_x origin
1dx temp_cel_dx ; facing?
if (equal) {
clc
adc y[@prop_address]
adec last_cel_x rel
} else {
sec
sbc y{@prop_address]
sbc last_cel_x rel

sta cel_x

iny

lda y{@prop_address])
clec

adce cel_y origin
adc last_cel_y_rel
sta cel_ y

jsr draw_contained_object
moveb #1,stand_alone
}
dec contents_counter
} while (plus)

3.suptech.18 (55)

Lucasfilm = Fujitsu
Habitat Technology Transfer Seminar

e Preliminaries
Overview of Habitat
Supporting technology
Habitat technology
Operations

4.habtech.01 (56)

Habitat technology

» How the system was specified
 Description of communications protocol
» C64 system

e Host system

» Development system
 The Habitat world database

— .

4.habtech.02 (57)

Habitat technology

» How the system was specified

* Description of communications protocol
» C64 system

e Host system

* Development system

 The Habitat world database

- -

4 habtech.03 (58)

-

How the system was specified

 Implementation constraints
 Resulting limits
o Solutions

_

4.habtech.04 (59)

i : :)
Implementation constraints

The Prime Directive
“You can never guarantee that the user hasn’t hacked the system...
...50 NEVER trust the PC to tell the truth.”
Limited bandwidth communications channel!
300 baud/1200 baud
Packet network running in surreal time
Existing Q-Link communications protocol
Commodore 64
Need low host overhead
low host overhead = low operations cost

—

4.habtech.05 (60)

Resulting limits

Limited number of Avatars per region (6)

Limited number of objects per region (128)
Theoretical maximum of 256 (protocol limit)
Limit of 32 unique heads per region (“head hack™)

Rationale
Limited by frame rate
Limited by communications bandwidth
Limited by amount of available memory

Note that these limits will be higher with 386 system...
...but they will still exist

e More on ghosts

m

4.habtech.06 (61)

Solutions

Object/message model

C64 objects vs. Host objects

Dynamic heap and object oriented virtual memory
Very compact message protocol

4. habtech.07 (62)

Habitat technology

* How the system was specified
 Description of communications protocol
» C64 system

e Host system

* Development system

 The Habitat world database

.

—

4.habtech.08 (63)

s

Description of communications protocol

e Q-Link silent protocol
» Problems with Q-Link protocol

~

4 habtech.09 (64)

Q-Link silent protocol

» Message types
SS
SSR
INIT
ACK
NAK
HEARTBEAT
» NAK-based
o ACK every 8 messages
» Heartbeats

—

4.habtech.10 (65)

The Q-Link Packet

The Quantumlink Packet looks like this:

Sync CRC Seq# Seq# Type ProgramID Data CR

Minimum QLink Packet

The 'SYNC' byte is ASCII 'Z’
The CRC is a CRC-16 that is sent as 4 bytes (see C64 protocol.m for details).
Next comes the transmit and receive sequence numbers; these are ring counters: 0x10-0x7f
The Type' is a number 0x20-0x26 representing the message type:
0x20 - Application Data
0x21 - SS (not used)
0x22 - SSR (not used)
0x23 - Init (not used)
0x24 - Ack
0x25 - Nak
0x26 - Heartbeat
The Progam ID bytes are used only with message type 0x20. They indicate the application
to/from which the message is directed/comes. Habitat recognizes these Program ID codes:
SS - Suspend Communications until SG
SG - Start Game (Resume Communications)
XS, AB - System-wide/Habitat-wide messages
U? - A Habitat Message

Packets are limited to 127 bytes in length.

4.habtech.11 (66)

Problems with Q-Link protocol

e The Q-Link packet
» Wasted bandwidth and CPU
« Excessive retransmission

4 habtech.12 (67)

Habitat technology

* How the system was specified

» Description of communications protocol
» C64 system

* Host system

e Development system

» The Habitat world database

h

4 habtech.13 (68)

C64 system

e “Skeleton” system
» Object behaviors

<

4.habtech.14 (69)

7~

“Skeleton” system

Animation engine
Communications driver
Heap manager

Sound effects driver

User interface

Interface to object behaviors

h

4.habtech.15 (70)

—

Animation engine

e Double buffered

» The foreground bit

» Background rendered once
Foreground: back to front
Background: front to back

4 habtech.16 (71)

Fig. 2a - typical object Fig. 2b - random background Fig. 2c - composite image Em. 2d - with wm:o:.

RPARANANARANS SNNYRV AN
BOLGLLY VA A
G4 VAR VA A A A
TR PR [1. RAA
DUXEAND
AN
_ i NRNNA
5 R N BN
»~ N \ g
Ak § 4 MW
afa b rb\ ~ 2 J
XX,
NI alafa ala -
AL 1A TA afla MU
ANYELD afa L1 \
= AN 7% .? N Z7u7
; 7 S N %Y
] alata ala /.I /./ é
11 1 NN

////_
TN N
%ﬁ,ﬁ.

9
?|

B Black

B Pink

[0 Transparent
B Wildcard

Fig. 2 - How an object is drawn

Fig. 3 - Habitat standard patterns
0 - 1 2

Communications driver

 Packets processed during VBLANK
« Valid Habitat messages escaped and buffered
» Messages processed during main loop

.

4. habtech.17 (74)

The Habitat Message Packet

The Habitat Message Packet looks like this:

Minimum Qlink Header HabID Seq# Obj Req RequestData ... CR
—
U \ CR
N\ Ny _|
ProgramID
Minimum Habitat Packet

The ASCII character 'U' is the Habitat Program ID byte. In order to reduce bandwidth we made
the second Program ID byte the Habitat Message Sequence Number. This number is separate from
the Q-Link protocol sequence number. This Habitat Message Sequence Number is generated by
the C64 side only! The exact same number is used in any reply from the host. If the Host has
something to tell the C64, it sends the ASYNC Seqg#. This is how the Seqg# is built:

elsOxxxx

where:

e : This bit is the 'end of message flag
s : This bit indicates 'start of message
x : 0-15 ring counter sequence number

This makes the valid Seg#s:
@ABCDEFGHLIKLMNO Z (and same with high bits set)
“abcdefghijklmno z (and same with high bits set)
or: Lower Case, High bit set = single packet request (start & end)
Upper Case, High bit set = last packet of a multi-packet message
Lower Case, High bit clear = first packet of a multi-packet message
Upper Case, High bit clear = Nth packet of a multi-packet message

Z, z, ~Z, and ~z indicate an incomming ASYNC message from the host.

Remaining message byte values all have a potential range of 0-255. Since the packet
network uses Carriage Return (0xOd & 0x8d) as the packet delimiter we must ‘escape’
Carriage Return bytes. We chose '[' as the escape character, so we must escape it also.
An escape sequence is [’ and the value XORed with 0x55.

The OBJect number comes next. This is the host-assigned number for the object acting.
Range 0-255

Next comes the REQuest number: This number is relative to the class of the OBJect being
referenced. Different classes of objects do different things with the same request number.

The bytes that follow are either the data going to the host or the reply data
coming back. Like the request number, interpretation is class dependent.

4. habtech.18 (75)

Heap manager

* Pointers by object type (COISA)
» The block header
» The delete blocks
e Alloc
Best fit
Garbage collection
* Dealloc
LRU scheme
e “The Head Hack”
Rationale
This can go away

—

4.habtech.19 (76)

The Contents Vector

The Contents Vector

Noid/Class list OIS OIS ... OIS Noid/Class list OIS OIS ... OIS
— —— NN —— NN TN

Noid/Class List

Cont Noid Class Noid Class Noid end

The Object Instance String (OIS)
style x y orient cont grl Class-specific variables

N

—

4. habtech.20 (77)

Sound effects driver

Handles object sound requests and collisions
No priorities

No continuous sounds

Updates during VBLANK

* Sounds stored as tokens

e “Music” is really just long SFX

« Example

\—

4 habtech.21 (78)

magic_2.spb

; magic_2 pw
; Pulsewidth Ramp starts here
byte Ox4 ; Ramp
byte 0x0,0x0,0x10,0x1,0x80,0x2 ; Start_Freq,Duration, Increment
byte 0x2 ;Stop

byte 0x0 ; next_sfx number

magic_2.sob

; magic_2
; Uses PW
; voice header
7 byte 0x0,0x0,0x0,0x0 ;Ring/Sync flag,User addr,Filter Flag
byte 0x2d ;Gate Ramp ADSR Wave
byte 0x0,0x0,0x5a,0x0,0x70,0x81 ; Start_Freq,Duration, Increment
byte Oxda, 0x0 ; ADSR
byte 0x40 ; Waveform
byte 0x2d ;Gate Ramp ADSR Wave
byte 0x0,0x2,0x20,0x0,0x50,0x80 ; Start_Freq,Duration, Increment
byte 0x0,0x£f9 ; ADSR
byte 0x80 ; Waveform
byte 0x4 ; Ramp
byte 0x0,0x2,0x40,0x0,0x20,0x40 ; Start_Freq,Duration, Increment
byte 0x20 :Wave
byte 0x0 ; Waveform
byte 0x2 ;Stop

byte 0x0 ; next_sfx number

User interface

e Cursor

Scanned every VBLANK

Can be “locked out” while a command is in progress
» Keyboard

Scanned every VBLANK

Can also be locked out

Output route depends on mode (paper or talk)

4 habtech.23 (80)

! h

Interface to object behaviors

» Command selection
Icon
Press return on text line
Paper “buttons”
 The “one command” queue
Recursive commands (facing, walking)
Processed in main loop
Locks interface (flashing cursor)
» Command processing
Waiting
- For animation
- For a reply
The “Host always replies” rule
- Rationale
The Throttle
- Rationale
Asynchronous interrupts
- What if the object goes away?

_

throttle doc
c64 system listings
4.habtech.24 (81)

0 A
Object behaviors

» General form

* Macro library

 Standard variables in environment
* Specific details of specific objects

\ ———————

c64 behavior listings
4.habtech.25 (82)

pawn_machine_ MUNCH.m

.
’
.
’

pawn_machine_ MUNCH.m

e

; Asynch code for the pawn machine operation.
; This is the asynch behavior for pawn machines.

This file should be assembled as position independent code.

Ne we we N

Chip Morningstar/F Randall Farmer
Lucasfilm Ltd.
Sept, 1986

~

~e

include "action_head.i"
include "class_equates.m"

actionStart

; sent by host

define MUNCHER_NOID - 0 ; avatar ’‘do’ing the machine
moveb actor_noid, subject_noid
complexSound PAWN_MUNCH, actor_noid
getResponse MUNCHER_NOID
sta actor_noid .
jsxr v_set_up_actor_pointers
chore AV_ACT _operate
newImage subject_noid, 1
asyncAnimationWait
chore AV_ACT hand back
asyncAnimationWait
newlmage subject_noid, 0
rts

actionEnd

pawn_machine_do.m

pawn_machine_do.m

Action code for the pawn machine ‘munch and spit out token’
This is the ’‘do’ behavior for pawn machines.

This file should be assembled as position independent code.
Chip Morningstar/F Randall Farmer

Lucasfilm Ltd.
Sept, 1986

.
’
.
’
.
’
.
’
.
’
.
’
.
’
.
’
.
’
.
’
.
’
.
’

include "action_head.i"
include "class_equates.m"

actionStart

; returned by host
define MUNCH_SUCCESS = 0

jsr v_punt_if_ not_adjacent
chore AV_ACT_operate
complexSound PAWN_MUNCH
newImage pointed noid, 1
sendMsg pointed_noid, MSG_MUNCH, 0
newImage pointed noid, 0
chore AV_ACT_hand_back
getResponse MUNCH_SUCCESS
cmp #SUCCESS_VALUE
if (equal) {

lda pointed_noid

chainTo v_purge_contents ; tokens arrive async.
}
chainTo v_beep_or_boing

actionEnd

spray_can_SPRAY.m

spray_can_SPRAY.m
Action code for the asynchronous spray can behavior.
This file should be assembled as position independent code.

Chip Morningstar
H Lucasfilm Ltd.
: 18-August-1986

include "action_head.i"

; These are the parameters for the SPRAY message
define SPRAY_SPRAYEE = 0

define SPRAY CUSTOMIZE 0 = 1

define SPRAY_CUSTOMIZE 1 = 2

actionStart

sound SPRAY, actor_noid
getResponse SPRAY_ SPRAYEE

jsr v_get_subject_object
getResponse SPRAY_CUSTOMIZE_O
putProp subject, AVATAR customize
getResponse SPRAY CUSTOMIZE_1
putProp subject, AVATAR_customize+l
rts

actionkEnd

.
’
.
’
.
’
.
I
.
’
’
’
.
’
.
’
.
’
.
’
.
’

spray_can_do.m

spray_can_do.m

Action code for the spray can ’‘do’ behavior.

This file should be assembled as position independent code.
Chip Morningstar

Lucasfilm Ltd.
18-August-1986

include "action_head.i"

;This is the parameter to the SPRAY request
define SPRAY_LIMB = 0

.
’

And these are the parameters it returns

define SPRAY SUCCESS = 0
define SPRAY_! CUSTOMIZE 0=1
define SPRAY_(CUSTOMIZE 1 =2

actionStart
lda in_hand _noid ; Are we holding the spray can?
cmp pointed_noid
if (equal) { ; Yes, change ourselves
sound SPRAY
lda pointed_at_limb ; What body part are we indicating?

putArg SPRAY_ LIMB
sendMsg pointed noid, MSG_SPRAY, 1
getResponse SPRAY_SUCCESS
if (!zero) {
getResponse SPRAY_CUSTOMIZE_ 0
putProp actor, AVATAR customize
getResponse SPRAY_CUSTOMIZE_ 1
putProp actor, AVATAR customize+l
rts
}
}
chainTo v_beep

actionEnd

Habitat technology

» How the system was specified

» Description of communications protocol
» C64 system

* Host system

e Development system

» The Habitat world database

h .

4.habtech.27 (84)

Host system

 Relationship between processes
* habitat

* regionproc
e habitat_db
* hatchery
 object_ids
* records

host listings
ephemera doc

4 habtech.28 (85)

regionproc

Roomer model
Various routines and files
Object behaviors
Layout of a class file
Layout of a struct file
Standard, generic behaviors
Peculiar, idiosyncratic behaviors
Special classes
- Region
- Avatar
Survey of various classes’ implementation

_

4. habtech.29 (86)

.
*
*
*
*
*
*
*
*

/

struct_pawn_machine.incl.pi1

struct_pawn_machine.incl.pll

Struct stub for pawn_machine instance descriptor.

Chip Morningstar
Lucasfilm Ltd.
6-October-1986

common_head
contents
class_specific
3 open_flags
3 key_hi
3 key_lo

N NN

like instance_head,
pointer,

14

binary(15),
binary(15),
binary(15);

class_pawn_machine.pll

/*

* class_pawn_machine.pll

*

* Behavior module for object class pawn_machine.
*

* Chip Morningstar

* Lucasfilm Ltd.

* 6-October-1986

*/

$replace PAWN_MACHINE CAPACITY by 1;

tinclude ’‘microcosm.incl.pll’;
$include ’‘defs_helper.incl.pll’;
$include ’‘defs_action.incl.pll’;

initialize_class_pawn _machine: procedure;
$replace PAWN_MACHINE_REQUESTS by 6;

declare a(0:PAWN_MACHINE_REQUESTS) entry based;
declare class_pawn machine_actions pointer;
declare 1 pawn_machine based $include struct_pawn_machine;

$replace I by CLASS_PAWN_MACHINE;

Class_Table(I) .capacity = PAWN_MACHINE_CAPACITY;
Class_Table(I) .max_requests = PAWN_MACHINE_REQUESTS;
Class_Table(I).alloc_size = size(pawn_machine);
Class_Table(I) .pc_state_bytes = 3;

Class_Table(I) .known = true;

Class_Table(I) .opaque_container = true;
Class_Table(I) .filler = false;

allocate a set (class_pawn_machine_actions);
Class_Table(I) .actions = class_pawn_machine_actions;

Class_Table(I).actions->a(HELP) = generic_HELP; /* 0 */
Class_Table(I) .actions->a(l) = illegal; /* 1 %/
Class_Table(I).actions->a(2) = illegal; /* 2 */
Class_Table(I) .actions->a(3) = illegal; /* 3 */
Class_Table(I) .actions->a(4) = illegal; /* 4 */
Class_Table(I) .actions=>a(5) = illegal; /* 5 */
Class_Table(I).actions=->a(MUNCH) = pawn_machine MUNCH;/* 6 */

end initialize_class_pawn_machine;

pawn_machine_MUNCH: procedure;
declare 1 self based(selfptr) %include struct_pawn_machine;

if (adjacent (selfptr) & self.contents->c(0) ~= NULL) then do;
if (pay_to(avatarptr, item value(ObjList (self. contents=>c(0))))) then

+ do;

call n_msg_l(selfptr, MUNCHS$, avatar. noid) ;
call n_msg_l(null(), GOAWAY_$, self. contents->c(0));
call destroy_pontents(selfptr),
call r_msg_l(TRUE);
return;

end;

call r_msg_l(BOING_FAILURE);

return;

end;

call r msg l(FALSE);
end pawn_machine_ MUNCH;

$page;

declare RoomNumber
declare RoomPtr

declare RoomPtrs(regions_per_process)

declare CapMonPtr

declare CapMonPtrs(regions_per_process)

declare 1 RoomDBank

2

NNNDNDNDN

NN

Region
Region_name
RoomQId
RoomBQId
last_noid
total_ghosts
Pending

flags,

3 private

3 owner_here

3 initialized
3 filler_flags
current_region,
lighting
depth
neighbor (4)
exit_type (4)
restriction (4)
nitty bits(28)
max_avatars
owner
entry_proc
exit_proc
class_group
orientation
object_count
space_usage
town_dir
port_dir
oracle,

3 object

3 person

3 control

WWWwWwWwwwWwwwwwwwww

UserList (UsersPerRegion)

region.structs.incl.pll

binary(15) external
pointer external;
pointer external;
pointer external;
pointer external;

based (RoomPtr),
binary(31),
character (20),
binary(31),
binary(31),
binary(15),
binary(15),
pointer,

bit (1),
bit (1),
bit (1),
bit (13),

binary(15),
binary(15),
binary(31),
binary(15),
bit (1),

bit (1),
binary(15),
binary(31),
binary(15),
binary(15),
binary(15),
binary(15),
binary(15),
binary(15),
character(l),
character(l),

binary(15),
binary(15),
pointer,
pointer,

ObjList (0:0bjectsPerRegion) pointer,

GhostList
Block_addr

declare 1 RoomCMon

2
2

class_ref_ count (0:MAX CLASS_NUMBER)
resource_ref_ count (NUMBER_OF RESOURCES)

declare 1 Memory Block

2
2

declare DayNight

declare 1

free
entry(64)

pointer,
pointer;

based (CapMonPtr),

based,
bit (64),
char (40);

bin(l5) external initial(0):

initial(0Q);

binary(195),
binary(15);

declare

player based
$include ‘struct_user.incl.pll’;
1 object based
$include ‘instance_head.incl.pll’;,
2 paraml pointer,
2 param2 char(l);

entry for avatar

entry for object

to contents list
depends on class

*/

*/
*/

region.structs.incl.pll

declare current_noid binary (15) external;

declare current_request binary (15) external:

declare current_header char(l) external;

declare current_gid binary (31) external;

declare selfptr pointer external initial(null()):
declare avatarptr pointer external initial (null()):
declare userptr pointer external initial (null()):;

declare request_string char(646) var external;

declare fan_cnt binary(15) external;
declare fan_list (UsersPerRegion+200) pointer external; /* + 200 ghosts */
declare 1 now_in external,
2 last bin (31) initial(0),
2 count bin(15) initial (0),
2 line (4) char(40) var;
declare 1 enter_info based, /* remember info for later retry */
2 room binary(31),
2 user binary(31),
2 que binary(31),
2 attempts binary(15),
2 params char(254) var;

declare 1 fountain based,

2 type binary(15),
2 which_room binary(15),
2 start_time binary(31),
2 end_time binary(31),
2 interval binary(31),
2 msg_text char(100) var:

declare bit_mask (UsersPerRegion) bit (32) external; /* user index bit mask */

$replace Separation_Char by 144;

class_region.pll

class_region.pll
Region object behavior module for MicroCosm(TM) .
Chip Morningstar

Lucasfilm Ltd.
8-April-1986

*
*
*
*
*
*
*
*

*

* Revised to add ’'prompt-reply’ engine
* 28-Jan-1987 FRF

*/

$include ’‘microcosm.incl.pll’;
$include ’‘defs_action.incl.pll’;
$include ’‘defs_helper.incl.pll’;

treplace NUMBER_OF_REPLYS by 3; /*This should GROW*/
declare reply_. actlons(NUMBER OF_REPLYS) entry variable external;
declare reply_ strlngs(NUMBER OF REPLYS) character(114) varying static init(
'Edit:’
/* 1 = God Tool */
’Yes?’,
/* 2 = Magic Opener */
'Enter your 3 digit number:’
/* 3 = Lottery */
)

declare set_offline entry (binary(15));
declare update_object_disk entry;
declare god_tool_revisited entry;
declare magic_opener_revisited entry;
declare lottery revisited entry;

initialize_class_region: procedure;
$replace REGION_REQUESTS by 7;

declare a(0:REGION_REQUESTS) entry based:
declare class_region_actions pointer;

$replace I by CLASS_REGION;

Class_Table(I) .capacity = 0; /* Contents is in ObjList, not instance */
Class_Table(I) .max_requests = REGION_REQUESTS;

Class_Table(I) .alloc_size = size(self);

Class_Table(I) .pc_state_bytes = 0; /* Not really true */

Class_Table(I) .known = true;

Class_Table(I) .opaque_container = false;

Class_Table(I) .filler = false;

allocate a set(class_region_actions);
Class_Table(I) .actions = class_region_actions;

Class_Table(I) .actions->a (HELP) = generic_HELP; /* 0 */
Class_Table(I).actions->a(DESCRIBE) = region DESCRIBE; /* 1 */
Class_Table(I).actions->a(LEAVE) = region_LEAVE; /* 2 %/
Class_Table(I) .actions->a(IMALIVE) = region_IM_ALIVE: /* 3 */
Class Table(I) actions->a (CUSTOMIZE) = region_ CUSTOMIZE; /* 4 */

Class Table(I) actions->a (FINGER_IN QUE) = region_ FINGER_IN_QUE; /* 5 */
Class Table(I) actions->a (I_AM HERE) = region_I_AM HERE; /* 6 */
Class Table(I) actions->a (PROMPT_REPLY) = region_ PROMPT _REPLY; /* 7 */

class_region.pll

reply actions(l) = god tool_revisited;
reply actions(2) = magic_opener_revisited;
reply actions(3) = lottery_revisited;

end initialize_class_region;

region_DESCRIBE: procedure;
$replace CURRENT_OBJECT_VERSION by "0’:

if (substr(request_string,3,1) = CURRENT_OBJECT_VERSION)
then call send_region_contents;
else call update_object_disk;
end region_DESCRIBE;

region_LEAVE: procedure;
call set_offline (avatar.avatarslot);
end region_ LEAVE;

/* The IM ALIVE and CUSTOMIZE request processing deserve special
/* comment. First, the fact that they get to this point means
/* that a successful response should be sent. This was

/* determined by the master process (microcosm), but the

/* actual response must be sent by this process (regionproc)

/* in order to insure that the terminal handler’s default output
/* queue has been switched to this process. JDH

region_IM ALIVE: procedure;
call r_msg_2_s (TRUE, 48 /* 48 = ascii "0" */,
'Insert Habitat data disk; press any key.’);
end region_IM_ALIVE;

region_CUSTOMIZE: procedure:;
call r msg_1l (TRUE);
end region_CUSTOMIZE;

region_FINGER IN_QUE: procedure;
call p_msg_l(null(),avatarptr, CAUGHT_UP_S$, TRUE) ;
end region_FINGER_IN_ QUE;

region_I_AM HERE: procedure;

call clear_bit (avatar.gr_state,7);

call b_msg_1l(null(),APPEARING_$,avatar.noid);
end region_I_AM HERE;

region PROMPT REPLY: procedure;
declare i binary(15);

declare L binary(15):

declare strlen binary(15);
declare reply number binary(15);

do i=0 to NUMBER_OF_REPLYS:
L = length(reply strings(i)):
if (length(request_string) >= L) then do;
if (substr(request_string,l,L)=reply_strings(i)) then do;
strlen=L;
reply number=i;
end;
end;
end;
if (reply_number>0) then do;
request_string = substr(request_string,strlen+l);
call reply_actions(reply number);
end;
end region_PROMPT_REPLY;

*/

*/
*/
*/
*/
*/

*
*
*
*
*
*
*
*
*
*
*

NN

3
3
3
3
3

struct_avatar.incl.pll

struct_avatar.incl.pll

Chip Morningstar
Lucasfilm Ltd.
8-April-1986
revised 13-March-1987 JH new database structure

common_head
contents
class_specific

activity
action
health
restrainer
customize (3)

/* Host specific: */

WWwWwWwLwwwwww

bank_account_balance
turf

stun_count
nitty_bits (32)
true_orientation
true_head_style
true_custom(3)
curse_type
curse_counter
last_login

Struct stub for avatar instance descriptor.

like instance_head,

pointer,

I’

binary(15),
binary(15),
binary(15),
binary(195),
binary(15),

binary(31),
binary(31),
binary(15),
bit (1),

binary(15),
binary(15),
binary(19%5),
binary(15),
binary(195),
binary(31);

class_avatar.pll

class_avatar.pll
Avatar object behavior module for Habitat.
Chip Morningstar

Lucasfilm Ltd.
8-April-1986

*
*
*
*
*
*
*
*
*

/

$include ’'microcosm.incl.pll’;
$include ‘defs_action.incl.pll’;
$include ‘defs_helper.incl.pll’;

declare process_messager_name entry;

declare process_messager_msg entry;

declare request_player_list entry:;

declare handle_internal_trace entry (char(*) var):;

$replace SIT_GROUND by 132;
$replace SIT_CHAIR by 133;
%replace SIT_FRONT by 157;
$replace STAND_FRONT by 146;
$replace STAND_LEFT by 251;
$replace STAND_ RIGHT by 252;
$replace STAND by 129;
$replace FACE_LEFT by 254;
$replace FACE_RIGHT by 255;

$replace COLOR_POSTURE by 253;
initialize_class_avatar: procedure;
$replace AVATAR_REQUESTS by 14;

declare a(0:AVATAR_REQUESTS) entry based;
declare class_avatar_actions pointer;
declare 1 avatar based %include struct_avatar;

$replace I by CLASS_AVATAR;

Class_Table(I) .capacity = AVATAR CAPACITY;
Class_Table(I) .max requests = AVATAR REQUESTS;
Class_Table(I).alloc_size = size(avatar);
Class_Table(I) .pc_state_bytes = 6;
Class_Table(I) .known = true;

Class_Table(I) .opaque_container = true;
Class_Table(I) .filler = false;

allocate a set (class avatar_actions);
Class_Table(I) .actions = class_avatar_actions;

Class_Table(I).actions->a(HELP) = avatar_ IDENTIFY; /* 0 %/
Class_Table(I).actions->a(l) = illegal; /* 1 */
Class_Table(I).actions->a(2) = illegal; /* 2 */
Class_Table(I) .actions->a(3) = illegal; /* 3 */
Class_Table(I) .actions->a(GRAB) = avatar_ GRAB; /* 4 */
Class_Table(I) .actions->a (HAND) = avatar_HAND; /* 5 %/
Class_Table(I) .actions->a(POSTURE) = avatar_POSTURE; /* 6 */
Class_Table (I) .actions->a(SPEAK) = avatar_SPEAK; /* 7 */
Class_Table(I) .actions->a(WALK) = avatar_WALK; /* 8 */

Class_Table(I) .actions->a (NEWREGION) = avatar NEWREGION;/* 9 */
Class_Table(I).actions->a(DISCORPORATE) = avatar_ DISCORPORATE;/*10 */
Class_Table(I) .actions->a (ESP) = avatar ESP; /* 11 */

class_avatar.pll

Class_Table(I) .actions->a(SIT) = avatar_SITORSTAND; /* 12 =/
Class_Table(I) .actions->a(TOUCH) = avatar_TOUCH; /* 13 =/
Class_Table(I) .actions->a(FNKEY) = avatar_FNKEY; /* 14 */

end initialize_class_avatar;

avatar_DISCORPORATE: procedure;
if (holding_class (CLASS_MAGIC_LAMP)) then do:
if (ObjList(avatar.contents->c (HANDS))->o.gr_state =
MAGIC_LAMP_GENIE) then
call object_say(self.noid, 'You can’‘t turn into a ghost while you are hold
end; else if (holding_restricted_object(avatarptr)) then do;

call object_say(self.noid, ‘You can’’t turn into a ghost while you are holding t
end; else do:

call lights_off (avatarptr):
call switch_to_ghost;
return;
end;
call r_msg_1l(FALSE):
end avatar_ DISCORPORATE;

avatar GRAB: procedure;
declare item_noid binary(15):;
declare 1 self based(selfptr) %include struct_avatar;
declare 1 item based(itemptr) %include struct_gen_object:
declare itemptr pointer;

item_noid = NULL;
if (empty_handed(avatarptr) & “empty_handed(selfptr)) then do;
item noid = self.contents->c (HANDS);
itemptr = ObjList (item_noid):
if (~“grabable(itemptr)) then do;
call r_msg_1(NULL);
if (current_region.nitty_bits (STEAL_FREE)) then
call object_say(self.noid,’This is a theft-free zone.’);
return;
end;
if (~Userlist(self.avatarslot)->u.online) then do;
call r_msg_1l(NULL):
return;
end;
if (*~ change_containers(item noid, avatar.noid, HANDS, true)) then do;
call r msg_1l(NULL);
return;
end;
call n_msg_l(avatarptr, GRABFROMS, self.noid);
call inc_record(avatarptr, HS$grabs);
end;
call r_msg_l(item noid):;
end avatar_ GRAB;

avatar HAND: procedure;
declare success binary(15);
declare item noid binary(15);
declare 1 self based(selfptr) %include struct_avatar;

if (self.class = CLASS_MAGIC_LAMP & self.gr_ state =
MAGIC_LAMP GENIE) then do;
call object_say(item_noid, ’You can’’t give away the Genie!’);
success = FALSE;
end; else if (“empty_handed (avatarptr) & empty handed(selfptr) &
self.container = THE_REGION) then do;
success = TRUE;
item_noid = avatar.contents->c (HANDS):;

class_avatar.pll

if (~change_containers(item_noid, self.noid, HANDS, true)) then
success = FALSE;

else do:
self.activity = STAND;
self.gen_flags (MODIFIED) = true;
call n_msg_l(selfptr, GRABFROMS, avatar.noid):

end;

end; else do:
success = FALSE:;

end;
call r msg_l(success);
end avatar_ HAND;

avatar_POSTURE: procedure;
declare new_posture binary(l5):

new_posture = rank(request (FIRST));
if (selfptr = avatarptr) then do;
if (0 <= new_posture & new_posture < 256) then do:
if (new_posture = SIT_GROUND | new_posture = SIT_CHAIR |
new_posture = SIT_FRONT | new_posture = STAND |
new_posture = STAND_ FRONT | new_posture = STAND_ LEFT|
new_posture = STAND RIGHT | new_posture = FACE_LEFT |
new_posture = FACE_ RIGHT) then
avatar.activity = new_posture;
if (new_posture “= COLOR_POSTURE) then
call n_msg_l(avatarptr, POSTURES, new_posture);
if (new_posture < STAND_LEFT | new_posture = COLOR_POSTURE) then
call r _msg 1l(TRUE);
end;
end;
end avatar POSTURE;

avatar_SPEAK: procedure;
declare audience binary(15);
declare audienceptr pointer;
declare text character (TEXT_LENGTH) varying;

audience = rank(request (FIRST)):
text = substr(request_string, 2);
if (length(text) < 4) then text = ’ 7 || text || ' /;
if (substr(text,1,3) = ’=!T’) then do;
call handle_internal_trace (substr(text,4));
call r msg_1(FALSE):
return;
end;
if (index(text, 'TO:’) = 1 | index(text, 'To:’) = 1 |
index(text, ‘to:’) = 1) then do;
request_string = ltrim(substr(text, 4));
call process_messager_ name;
end; else do;
if (avatar.curse_type = CURSE_SMILEY) then
text = 'Have a nice day!’;
else if (avatar.curse_type = CURSE_FLY) then
text = buzzify(text):
call b_msg_s(avatarptr, SPEAKS, text):
/* call n_msg_s(avatarptr, SPEAKS, text);
call r_msg_l_s(avatarptr, FALSE, text); */
call inc_record(avatarptr, HSStalkcount);
call r msg_l(FALSE);
end;
end avatar_ SPEAK;

avatar ESP: procedure;

class_avatar.pll -

if (length(request_string) <= 5) then
call r_msg_1l(FALSE);

else do;

request_string = substr(request_string, 6); /* remove 'ESP:’ */
(length (request_string) < 4) then request_string = ’ * || request_string || '
call inc_record(avatarptr, HSSesp_send_count);
call process_messager_msg;

call r_msg_1(TRUE);

if

end:

end avatar_ ESP;

avatar_WALK:
declare
declare
declare
declare
declare
declare

procedure;

x binary(15):;

y binary(15);

walk_how binary(15);
destination_x binary(15):
destination_y binary(15):
flip_path bit (1) aligned;

x = rank (request (FIRST));

y = rank(request (SECOND)) ;

walk_how = rank (request (THIRD)):

if (selfptr “= avatarptr) then do;
destination_x = avatar.x;
destination_y = avatar.y;

end; else if (avatar.stun_count > 0) then do;
avatar.stun_count = avatar.stun_count - 1;
call r_msg_3(avatar.x, avatar.y, walk_how);

if

(avatar.stun_count >= 2) then

call p_msg_s(selfptr, selfptr, SPEAKS$, 'I can’’t move. I am stunned.’):
else if (avatar.stun_count = 1) then
call p_msg_s(selfptr, selfptr, SPEAKS, 'I am still stunned.’);

else

call p_msg_s(selfptr, selfptr, SPEAKS, 'The stun effect is

return;
end; else do;
call check_path(THE_REGION, x, y, destination_x, destination_y,

if

(flip_path) then
call set_bit (walk_how, 8);

else

if

call clear_bit(walk_how, 8);
(destination_x "= self.x | destination_y “= self.y) then do;
self.x = destination x;
self.y = destination_y:
call n_msg 3(selfptr, WALKS, destination x, destination_y,
walk_how);

end;

end;

call r_msg_3(destination_x, destination_y, walk_how);
end avatar_WALK;

avatar_ NEWREGION: procedure:;

declare
declare
declare
declare
declare
declare
declare

direction binary(15);

new_region binary(31);

new_entry mode binary(15):;

direction_index binary(1l5):;

passage_id binary(195);

passageptr pointer;

1 passage based(passageptr) %include struct_door;

direction = rank(request (FIRST));
passage_id = rank (request (SECOND)) ;
new_region = 0;

new_entry mode = 0;

wearing off now.

flip_path);

class_avatar.pll

if (direction = AUTO_TELEPORT_DIR) then do;
if (UserList (self.avatarslot)->u.auto_destination ~= 0) then do:

end;

end;

new_region = UserList (self.avatarslot)->u.auto_destination;
Userlist (self.avatarslot)->u.auto_destination = 0;
new_entry mode = Userlist(self.avatarslot)->u.auto_mode;

end; else do:

/* 1f we get here the user has hacked his Cé4. By executing a
return statement here, we don’t respond to his message, thus
hanging him. */

call object_say(self.noid, ’Hi hacker!’):;

return;

end;
else do;

passageptr = ObjlList (passage_id):
if (passageptr ~= null()) then do;

end;

if (passage.class = CLASS_DOOR |
passage.class = CLASS_BUILDING) then do:
if (passage.class = CLASS_DOOR) then do;
if (“test_bit(passage.open_flags, OPEN_BIT) |
passage.gen_flags(
DOOR_AVATAR_ RESTRICTED_BIT)) then do:
call r_msg_1l(FALSE):;
return;
end;
end;
new_region = passage.connection;
end;

direction_index = mod(direction + current_region.orientation + 2, 4) + 1;

if (selfptr = avatarptr & 0 <= direction & direction <= 4) then do:
if (holding_class(CLASS_MAGIC_LAMP)) then

end;

if (ObjList (avatar.contents->c (HANDS))->o0.gr_state =
MAGIC_LAMP_GENIE) then do;
if (direction = AUTO_TELEPORT_DIR) then
call drop_ object in hand(selfptr),
else do;
call object_say(self.noid,
‘You can’’t leave while you are holding the Genie.’):
call r_msg_1(FALSE);
return;
end;
end;

if (holding_restricted_object (avatarptr)) then do;

end;

if (direction = AUTO_TELEPORT_DIR) then
call drop object in hand(selfptr),
else if (current_region.restriction(direction index)) then do:
call object_say(self.noid,
’You can’’t leave while you are holding that.’);
call r msg_1(FALSE);
return;
end;

if (new_region = 0) then

new_region = current_region.neighbor(direction_index);

if (new_region “= 0 & new_region "= -1) then do;

end;

call n_msg_1(null(), WAITFOR_$, avatar.noid):

call goto_new_region(avatarptr, new_region, direction,
new_entry_mode) ;

return;

class_avatar.pll

call object_say(self.noid, ’‘There is nowhere to go in that direction.’);
call r_msg_1(FALSE):
end avatar_ NEWREGION;

holding_restricted_object: procedure (whoptr) returns(bit(l));
declare whoptr pointer;
declare 1 who based(whoptr) %include struct avatar;
declare obj_noid binary(15); -
declare objptr pointer;
declare 1 obj based(objptr) %include struct_gen_object;

obj_noid = who.contents->c (HANDS);
if (obj_noid "= NULL) then do;

objptr = ObjList (obj_noid);

if (objptr “= null()) then

return (obj.gen_£flags (RESTRICTED)):
end;
return(false);
end holding_restricted_object;

avatar_IDENTIFY: procedure;
declare selfname character(20) varying:
declare avatarname character(20) varying:;
declare result character(256) varying:

selfname = ltrim(rtrim(UserList (self.avatarslot)->u.U_Name)):
avatarname = ltrim(rtrim(UserList (avatar.avatarslot)->u.U_Name));
if (avatarptr = selfptr) then do;
result = ‘Your name is ’ || avatarname || ‘. You are ’;
if (avatar.stun_count > 0) then
result = result || ’stunned, and you are ’;
if (avatar.health > 200) then
result = result || ’‘in the peak of health.’;
else if (avatar.health > 150) then
result = result || ‘in good health.’:;
else if (avatar.health > 100) then
result = result || ’in fair health.’;
else if (avatar.health > 50) then
result = result || ’in poor health.’;
else
result = result || ’'near death.’;
end; else do;
call p_msg_s(avatarptr, selfptr, SPEAKS, 'I am ’ || avatarname);
if (Userlist (self.avatarslot)->u.online) then
result = ‘This is ’ || selfname;
else
result = ‘Turned to stone: ’ || selfname;
end;
call r_msg_s(result);
end avatar_ IDENTIFY;

$replace STAND UP by 0;
$replace SIT_DOWN by 1;

avatar_ SITORSTAND: procedure;
declare up_or_down binary(15);
declare seat_id binary(15);
declare 1 seat based(seatptr) %include struct_gen_container;
declare seatptr pointer;
declare i binary(15):

up_or_down = rank(request (FIRST));
seat_id = rank(request (SECOND));
seatptr = ObjList (seat_id):;

class_avatar.pll

if (seatptr “= null()) then do:;
if (seat.class = CLASS_CHAIR | seat.class = CLASS_COUCH |
seat.class = CLASS_BED) then do;
if (up_or_down = STAND_UP) then do;
if (avatar.container = seat_id) then do;
if (~ change_containers(avatar.noid, THE_REGION,

0, false)) then do;
call r_msg_2 (FALSE,Q);
return;
end;
avatar.activity = STAND;
avatar.gen_flags(MODIFIED) = true;
call checkpoint_object (0, avatar.noid):
call r_msg_2(TRUE, 0);
call n_msg_3(avatarptr, SITS, STAND UP, seat_id, 0):

return;
end;
end; else do;
i=0;

do while (i < Class_Table(seat.class).capacity):;
if (seat.contents->c(i) = NULL) then do;
if (~ change_containers(avatar.noid, seat_id, i, true)) then
call r_msg 2 (FALSE,0);
return;
end;
call r _msg_2(TRUE, i);
call n_msg_3(avatarptr,SIT$,SIT_DOWN, seat_id,i);
return;
end;
i=14i+1;
end;
end;
end;
end;
call r_msg_2(FALSE, 0);
end avatar_SITORSTAND;

avatar_TOUCH: procedure;
declare touchee_id binary(15);
declare toucheeptr pointer;
declare 1 touchee based(toucheeptr) %include struct_avatar;
declare new_posture binary(15);
declare 1 self based(selfptr) %include struct_avatar;

touchee_id = rank(request (FIRST)):
new_posture = rank (request (SECOND));
toucheeptr = ObjList (touchee_id):;
call n_msg_l(avatarptr, POSTURES, new_posture);
call p_msg_s(selfptr, toucheeptr, SPEAKS, 'Gotcha!’);
call p_msg_s(selfptr, avatarptr, SPEAKS, ’‘Gotcha!’);
call r_msg_1(TRUE);
if (avatar.curse_type "= 0) then
call curse_touch(avatarptr, toucheeptr);
else if (touchee.curse_type "= 0) then
call curse_touch(toucheeptr, avatarptr);
end avatar_TOUCH;

buzzify: procedure (text) returns(character (TEXT_LENGTH) varying);
declare text character(*) varying;
declare result character (TEXT_LENGTH) varying;
declare resultstr(-1:TEXT_LENGTH) character(l) defined(result);
declare i binary(15);

result = translate(text,

class_avatar.pll

! 2Z222',
"abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789") ;
do i=length(result) to 1 by -1:
if (((resultstr(i-1l) "= 'z’ & resultstr(i-1) ~= 72’) | 1 = 1) &
(resultstr(i) = ‘2z’ | resultstr(i) = ‘Z’)) then do:
if (resultstr(i) = ’'2’) then
resultstr(i) = 'b’;
else
resultstr(i) = 'B’;
end;
end;
return (result) ;
end buzzify:;

avatar_FNKEY: procedure;
declare fn_key binary(15):
declare ref_obj binary(15);

$replace F3 by 11;
$replace F4 by 12;
$replace FS by 13;
$replace F8 by 16;

fn_key = rank(request (FIRST)):;
ref_obj = rank(request (SECOND)) ;

if (fn_key = F3)
then call request_player_list;
else if (fn_key = F4) then do;
call p_msg_s(null(),avatarptr,20,’What is Sekrit Word?’);
call r_msg_1(TRUE):
end;
else call r_msg_1l(BOING_FAILURE);

end avatar_FNKEY;

Habitat technology

» How the system was specified

» Description of communications protocol
e C64 system

* Host system

* Development system

 The Habitat world database

h

4.habtech.31 (88)

r

Development system

Code development

» Image creation

A word on sound creation
Misc stuff

4.habtech.32 (89)

Code development

» Macross and Slinky
a note on syntax differences between Macross and generic 6502

+ Make, et al

* Muddle and Puddle

_ =

muddle/puddle doclisting
4.habtech.33 (90)

Image creation

« Fastlink
e Face
« Utilities for image conversion

image utils listing
4.habtech.34 (91)

Misc stuff

* Weird Fastlink utilities

db, etc.

Folded into applications
» Heap dump analysis tools

describe

heapdiff

mem_map

mem_use

object_map

listing of tools
4. habtech.35 (92)

Habitat technology

» How the system was specified

» Description of communications protocol
» C64 system

» Host system

e Development system

» The Habitat world database

N

4 habtech.36 (93)

s

The Habitat world database

» The world map
« Cities, built and planned (internal view)
¢ Internal view of the world database

4 habtech.37 (94)

The world map

« How the map was generated
 Other realms

—

confract listing
realm maps
4.habtech.38 (95)

Cities, built and planned (internal view)

 Populopolis
* Quantumgrad
e Other cities

city scnematics
4 havieun 39 (96)

s

Internal view of the world database

Structure of the primary databases

The Habitat disk vs. memory model: regionproc vs. habitat_db
Ghu

Region creation tools

4.habtech.40 (97)

5

Structure of the primary databases

» Region

Object

Avatar

Text

Miscellaneous databases
Teleport
Oracle requests
System log
Mail

database structs
4 habtech.41 (98)

Ghu

Command oriented database editor
A tool for techies!
Can access all databases
Macro and variable definition capability
Flexible access control capability
Command set limitation allows special setup for non-techies
 Can run interactively or batch

——

ghu ghuide
ghu listing
macro library listing

4 habtech.42 (99)

Sample Ghu macros

macro tome_awards

value "awarding Tome Hider"
award 100,"skyline"
endmacro

macro where_is_tome
tome_winnings_report
if (tome.container 1= tome_location)
set tome_location = tome.container

value "1111111 The Tome has been Moved e
value tome_location
endif
endmacro

macro tome_winnings_report
value last_winner.
value ' has won §'.
set winnings = (today - last_hidden)/one_day*100
value winnings
endmacro

macro tomewin
tome_winnings_report
set last_winner=$1
set last_hidden=today
read tome into tometext.doc
endmacro

macro tomeupdate
write tome file tometext.doc
exec tome.macro
v 'Type this line:'
v 'sendmail rant_editor file tometorant.doc’
endmacro

4.habtech.43 (100)

7

Region creation tools

e Griddle and Fred
¢ Demonstration of Fred
e Plex

griddle/ffred docs/listings
plex doc & listing
reno/red listing

4.habtech.44 (101)

Sample Griddle file

use region |{

1

owner: a 0

light_level: O

depth: 24
east_neighbor: r -1
west_neighbor: r -1
north_neighbor: r -1
south_neighbor: r -1
class_group: 0

orient: O

entry proc: 0
exit_proc: 0

east_exit: 0

west_exit: 0
north_exit: 0
south_exit: 0
east_restriction: '0'b
west_restriction: ’'0'b
north_restriction: ‘0’b
south_restriction: '0’b
weapons_free: ‘1’b
nitty bits: 7100000000000000000000000000’b
name: "‘1 #'2"

avatars: 6
town_dir:’\x7c’
port_dir:’\x7c’

1se ground {

}

container: r =-1001

x: 0
y: 4
style: 1

gr_state: 0

orient: 228

gr_width: 0

restricted: 0’b

nitty bits: *0000000000000000000000000000000’b

use wall {

}

container: r -1001

x: 0
y: O
style: 4

gr_state: 0

orient: 220

gr_width: 0

restricted: '0’'b

nitty bits: 70000000000000000000000000000000'b
length: 0

height: 0

pattern: 0

use window {

container: r -1001
x: 132
y: 59

4.habtech.45 (102)

Sample Plex file

/*
The Vanilla Habitat Apt Building
extn defined: bnames[] (building names)
afront () (apartment front regions)
al) (apartments interiors)
h{() (3 door hallway segments)
e{() (elevators)
elby (the generic near elevator lobby)
bboard (a residents bulliten board)
*/
hlseg: /* in $1= base room #, $2 = color $3=name */
a?!($3,81) a?!($3,51+1) a?!'($3,51+2)
| | I
-###h* ($140,51+1,51+2,c[$2], $3,%4) -
hl: /* in $1= base room #, $2 = color $3=name */
-hlseg($1,5$2,%$3,$4)-hlseg($1+3,5%2,53,%4)-hlseg($1+6,5$2,53,54)-hlseg($1+9,52,53, $4)
elbyl35: /* in $1 floor number (color) $2-name */
|
-elby($1*100,5$1*100+11,51*%100+12,51*100+23,5$1*100+24,51*100+35,c[$1-1]1,52)-
|
elby3671:
|
-elby($1*100+36,51*100+47,$1%100+48,5$1*100+59,51*100+60,51*100+71,c([S$1-1]1,52) -
|
£: /* Sl=name */
hl<(.*100+124,.,$1,1a) -stairs(.+1l,c[.],$1,1a)~ hl>(.*100+136,.,51,ra
| | I
hl1(.*100+112,.,%1,ra)~-elbyl35<(.+1,$1)-e?(.+1,c[.],$1,ua)-elby3671>(.+1,51)=-hl(.*1
| |
hl<(.*100+100,.,51,ra) h1>(.*100+160, .,$1,1a)
apartments: /* $l=name */
-£(S1)-£(S1)-£(S1)-£(S1)-£(S1)-£(S1)-£(S1)-£(S1)-£(S1)-£($1)-£(51)-
lobby: /* $l=name */
-stairs ("Lobby",c[.],$1,da)-
|
#e? ("Lobby",c[.],$1,da) -bboard (bnames[$1])
|
aptbuilding:

basement-lobby (bnames[$1]) -apartments (bnames($1))-roof
|
afront? (bnames[$1])

4.habtech.46 (103)

Lucasfilm s Fujitsu
Habitat Technology Transfer Seminar

* Preliminaries

e QOverview of Habitat
 Supporting technology
* Habitat technology

e Operations

5.0p.01 (104)

4] 1
Operations

 Support personnel
» Day-to-day operations
 Creating new experiences

 Rules, policies, and laws I

5.0p.02 (105)

N

Support personnel

» Rangers (guides and docents)
« Limited access operators
Oracles
Publishers
Property managers
etc.
» THE Oracle
» Designers

M

5.0p.03 (106)

0 A
Day-to-day operations

» Automatic operations with Ghu
Prizes
Ongoing games
Rents and property management
 Batch processes to keep things tidy
¢ Running the Oracle
Publications and information distribution

—

operations docs
5.0p.04 (107)

—

Creating new experiences

» New activities

» New places

* Some ideas never implemented

« Brainstorm session on experiences

5.0p.05 (107)

Foreground Y-coordinates

whn_%si-os%% Habitat Region Design Worksheet

Ghost icon area

Color cell boundaries

Horizon line

; . : : . 128
\——X-coordinates East South

West North
Light level ___ Orientation _____ Neighbor
Weapons free? ______ Avatar limit Restricted?
Theft free? ___ Owner (Exit action)

Name (Entry action)

Habitat Region Design Worksheet

West North East South

Light level Orientation Neighbor
Weapons free? Avatar limit Restricted?
Theft free? Owner (Exit action)

Name (Entry action)

EYNEEEEL.

e Feee
3 : H by i3 & T
H 2 H 3 3 H L
vy g .
% 4 %
% i
- s : .
i : ; :
3 b
o~ ERTROOR: .
g 2 H i b4
b
e i e o i
& y ; .
¥ & b i
i £ : :
o e -
. o
p pereeebeececees
¥ 4
4 H
§ :
z ;

199YsH.I0AA dey uo133y IjeyiqeH

e

Region ideas never implemented

Stock Market

Operational theaters
Machiavelli

Fully functional communities
Other cities

* The West Pole

e Avatar Hell

e The Control Center

¢ The moons of Habitat

» Game shows

‘ = =

design docs
5.0p.06 (108)

r 3

Feature ideas never implemented

« “Follow”

» Magic containers
Publishing machine
Burster
Copier

« Stock certficate

* Vendroid that pays its owner

M

design docs
5.0p.07 (109)

\Q

Brainstorm session on experiences

« What will make Japanese Habitat experiences different from American?

5.0p.08 (110)

Rules, policies, and laws

Maintaining the consistency of the user’s worldview
Keeping it fun
Fun for the users
Fun for the operators
- If the operators aren't having fun it won’t work
Relationship to policies of company operating the host system
Relationship to laws and regulations of the “real” world

5.0p.09 (111)

Habitat Ephemera
Where Stuff Is

The following is an overview of the various Habitat directories. The detailed
information about each chunk of stuff will be given later.

The Habitat source that we have developed is kept on the Quantum Stratus system

under the user account guest . lucas. The important elements of the directory hierarchy
are:

#d010>1ucas

microcosm
Actions
Classes
Ghu
Grabthese
Linkable
Misc
Structs

toolbox

#d010>1ucas is the account’s home directory. Not much of interest is here except
for our abbreviations file, which is highly non-standard by Quantum’s reckoning (we have
tried to emulate the Unix environment as much as possible, rather than to use the Quantum
Stratus abbreviation set; this causes no end of trouble when Quantum folks try to do things
while logged in as us; if we had it to do over again...)

#d010>microcosm is the master source directory for Habitat. The name is
historical, since Habitat used to be called “MicroCosm”. In this directory are

1) various include files that are used by our code
2) directories for the rest of the source
3) command files and other miscellaneous working junk files

#d010>microcosm>Actions contains the source for the generic action routines.
These are object behaviors which are shared among multiple object classes.

#d010>microcosm>Classes contains the source for the various object classes.

#d010>microcosm>Ghu is the working directory for Ghu development and
maintenance.

#d010>microcosm>Grabthese is where we place updated source files for Janet
to grab them and incorporate them into the production system.

#d010>microcosm>Linkable is where all the compiled object files for all the
Habitat code lives (all the code that we maintain, that is).

#d010>microcosm>Mi sc contains miscellaneous other Habitat source files that
defy categorization.

#d010>microcosm>Structs contains .incl.pl1 files for the various different
object class structs.

#d010>toolbox has various utilities that we use. The most notable thing to be
found here is the release version of Ghu, but it also has a number of other minor utilities
which we have found useful.

Overall Structure of the Host System

The Habitat system is built around an “object oriented” design philosophy. The entire
Habitat world is a collection of “objects”. Abstractly, an object is a set of code and data
that together act like some concrete entity. For example, regions, avatars, vending
machines, magic wands, heads and teleport booths are all different kinds of objects.
Ideally, we would like some sort of programming environment/operating system that
incorporated this object model into its fundamental basis for operations. However, the
world is not ideal, so we have approximated an object-oriented system with a conventional
system that has a sort of object-oriented form.

The host system code can be divided into three very broad categories.

The first could be called the “skeleton”. This is the framework on top of which the
Habitat system runs. The skeleton consists of the main code of the regionproc; the
various external Habitat processes such as the database process, the hatchery, and so on;
and the non-Habitat host code that forms the rest of the Q-Link system. All of this code
was provided by Quantum and we will not describe it here except in the most summary
outlines (though we will make reference to it where appropriate).

The second code category we’ll call the “objects”. This is the collection of routines
which implement the definition and behaviors of the various different objects that make up
the Habitat world. These follow a rather rigid format and can be described as a group.
Along with the objects are a few sets of special code that handle major sub-systems.
Notable among these are the help system, the magic system, and the curse system. In the
interest of narrative clarity, these will be described in sections of their own.

The third category of code could be called the “helpers”. These are various routines we
have written to make the world work more smoothly for us. They are not, as a rule,
essential to the operation of the system, but understanding them is essential to
understanding the system. Fortunately, their job is to make things simpler rather than more
complex.

Summary of Operation

The following section is a summary of the operation of the main body of the Habitat
system. This is all described elsewhere in the early design documents, but we’ll repeat it
here in broad outline in order to provide some context for what follows.

The Habitat world consists of a set of regions, each of which is a place you can visit
with your Avatar. Each region contains some number of objects. Each object belongs to a
particular “class”. The class determines, in effect, what sort of object it is: how it is to
behave and how the data that describes its state are to be interpreted. In principle there are
256 possible object classes, numbered from 0 to 255. In practice only a little more than

half of these are actually used. Each object is represented by a data record that is kept in the
host’s memory when the object is in an “active” region and in a disk database when the
object is not in an active region. A region is said to be active when there are one or more
online users (avatars or ghosts) in it.

The process of activating a region when the first user enters consists of reading the
object records into memory from the appropriate databases (“‘databases” is plural because
regions and avatars, being special in various ways, are kept in separate databases from the
other objects). Deactivating a region consists of writing the records back out again when
the last user leaves (for efficiency, we only bother to actually write those records which
have changed in the interim). Each object in an active region is assigned a temporary
identifier called a “noid” (short for Numeric Object IDentifier) which is a number in the
range from O to 255. The region itself is represented by an object which always has noid
0. Thclregionp roc keeps an internal table that maps from noids to the object records
themselves.

Each transaction between the C64 and the host is couched in terms of the object model.
Each message from the C64 is directed to a particular object in the region that the C64’s
user finds himself in. The first byte of the message, in fact (after stripping off the various
telecommunications protocol bytes), is the noid of the object to which the message is
addressed. The byte after that is a number that indicates what the C64 is requesting of the
object. The remaining bytes, if any, are request-specific parameter information.

When a message arrives, the regionproc extracts the noid from the message and
uses this to locate the record corresponding to the object itself. This record contains,
among other things, the class number of the object. The class number is used as an index
into another table kept by the regionproc that contains the “class definitions”. Part of a
class’s definition is an array of pointers to procedure entry points that correspond to the
class’s various “behaviors”. The request number (the second byte of the message) is used
as an index into this array, and the indicated procedure is called. This procedure then
carries out whatever action is appropriate for the given request, including transmitting a
response message to the C64 if that is appropriate. Before calling the behavior procedure,
the regionproc also sets up a number of standard pointers and global variables that the
behavior can look at to find out about the environment in which it is executing.

All of the above machinations, with the exception of the behavior routines themselves,
are performed by the “skeleton” code mentioned earlier. This is the code that was
developed as Quantum’s portion of the project.

The Objects and Class Definition

Each object is defined by two PL/1 source files. The first defines the procedures to
initialize the object and implement the object’s various behaviors, if any. The second is an
include file that defines a PL/1 structure that describes the object’s state information (i.e.,
the contents of the object’s database record *after* having been read into memory).

The first file is called the “class” file and lives in the Classes directory. The second
is the “struct” file and lives in the St ruct s directory. For a given class, say “foo”, we
would have the files Classes>class_foo.pll and
Structs>struct_foo.incl.pll.

The class file defines a procedure initialize_class_foo thatis called by the
regionproc at system startup time. This procedure sets up the class table entry for this
class so that it will work right when the time comes. This file also contains the definitions
of any class-specific behavior procedures that may be required for the object. For example,
here is a very simple class file which defines the ball class:

/*

* class_ball.pll

*

* Ball object behavior module for Habitat.
*

* Chip Morningstar

* Lucasfilm Ltd.

* 9-April-1986

*/
$include 'microcosm.incl.pll';

$include 'defs_action.incl.pll’';
initialize_class_ball: procedure;
$replace BALL_REQUESTS by 3;
declare a(0:BALL_REQUESTS) entry based;
declare class_ball_actions pointer;

declare 1 ball based %include struct_ball;

$replace I by CLASS_BALL;

Class_Table(I)
Class_Table(I)
Class_Table(I)
Class_Table(I)
Class_Table(I)

.capacity = 0;

.max requests = BALL_REQUESTS;
.alloc_size = size(ball);

.pc_state_bytes = 0;
.known = true;

Class_Table(I)
Class_Table(I)

.opaque_container =
.filler

false;
false;

allocate a set(class_ball actions);

Class_Table(I) .actions

Class_Table(I).actions->a(HELP) = generic_HELP; /* 0
Class_Table(I) .actions->a(GET) = generic_ GET; /* 1
Class_Table(I) .actions->a(PUT) = generic_PUT; /* 2
Class_Table(I).actions->a(THROW) = generic_THROW; /* 3

end initialize_class_ball;

The following notes apply:

= class_ball_actions;

*/
*/
*/
*/

microcosm.incl.pll is the general purpose Habitat include file. It declares all the
basic global variables, types and constants that are used throughout the system. It should
be included in just about everything.

defs_action.incl.pll declares the entry points for the generic behavior routines
found in the various files in the Act ions directory. Note that many objects (this one
among them) share common behaviors. For example, the code to put down or pick up an
object is, with rare exceptions, the same regardless of the object’s class. Thus, we have
generic routines to handle the GET and PUT requests, instead of implementing these
procedures anew in each object class.

initialize_class ballisthe requlred initialization routine for this class. It is
called by the regionproc at system startup time. All classes MUST have a routine of
this sort.

BALL_REQUESTS is the maximum request number that objects of class ball will be
expected to receive. Itis defined here as a convenient constant that you will see reference
to in several places in the routine.

struct_ball is a string constant that is defined by the include file
defs_struct.incl.pll whichis in turn included automatically by the include file
microcosm. incl.pll. This string constant expands to the file name for the “struct”
file, mentioned above. The defs_struct.incl.pll include file defines one of these
string constants for each class. The idiom

declare 1 foo based %include struct_foo;

is a common one that will be seen again and again throughout the Habitat code.

Class Tableisa global table that is maintained by the regionproc. The primary
purpose of ‘this init procedure is to fill in the Class_Table entry for this class. This
consists of assigning various properties and allocating and setting up the array of pointers
to the behaviors.

capacity is the maximum number of objects that objects of this class may contain.
For objects which are not containers (e.g., this one), this should be set to 0.

max_requests is the maximum request number that objects of this class will accept.
If the regionproc receives a request to an object of this class that is greater than this
number, it will drop the request on the floor and put a diagnostic message in the run-time
log file (i.e., this should never happen).

alloc_size is the amount of memory to allocate for objects of this class when they
are read from the object database at region activation time.

pc_state_bytes is the number of bytes of data from the in-memory record to send
to the C64 when someone sees an object of this class (the number of bytes in addition to
the 6 which are sent for every object regardless of class). note that objects may have state
information on the host which is not revealed to the C64.

known is simply a flag that says, “Yes, this class exists”. This is used in the course of
various diagnostics.

opaque_container is a flag that is set to t rue if and only if the object is an
opaque container, i.e., a container whose contents are not visible without explicitly looking

inside it. This is false if the object is either not a container at all (the case here) or if the
object is “transparent” (e.g., a table).

act ions is the array of pointers to the behavior procedures for this class. Note that it
must be allocated dynamically since its size may vary depending on how many behaviors
the class has.

The particular elements of the act ions array correspond to the various requests that
the object will respond to. The request numbers are defined in the include file
defs message.incl.pll which is included automatically by
microcosm. incl.pll. These requests are always interpreted relative to the object
class (e.g., request 5 for class A does not mean the same thing as request 5 for class B).
However, for the sake of consistency and diagnostics, we DO enforce the following
conventions:

request 0 is always HELP
request 1 is always GET
request 2 is always PUT
request 3 is always THROW

if the class in question does not respond to one of these requests, it should set the
corresponding array entry to i11legal. In the case of the ball object, ALL of these
requests are handled by the generic behaviors, and so there are no ball-specific behaviors
defined here.

The struct file for this example looks like this:

/
struct_ball.incl.pll

Struct stub for ball instance descriptor.
Chip Morningstar

Lucasfilm Ltd.
9-April-1986

* X % % X % A X %

*
~

' 2 common_head like instance_head
/* terminates struct header from include file */

This is a trivial struct file, since the class ball has no state information that is peculiar to
the class. It merely has the common information that all objects have which is defined by
the struct instance_head in the microcosm.incl.pl1 file. For the record, it is:

/

instance_head.def.incl.pll

Chip Morningstar
Lucasfilm Ltd.
9-April-1986

* % Ok o Ok % % * *

The common header shared by ALL object instance descriptors.

*/

declare 1 instance_head based,

2 avatarslot binary(15),
2 obj_id binary(31),
2 noid binary(15),
2 class binary(15),
2 style binary(15),
2 X binary (15),
2 v binary(15),
2 position binary(15),
2 orientation binary (15),
2 gr_state binary(15),
2 container binary(15),
2 gr_width binary(15),
2 gen_flags(32) bit(1l);

The meanings of the various fields are described elsewhere.

An example of a slightly less trivial class definition is the pawn machine. Note the
similarities of form with the definition of class ball:

for object class pawn_machine.

/*

* class_pawn_machine.pll

*

* Behavior module

*

* Chip Morningstar

* Lucasfilm Ltd.

* 6-October-1986

*/
%replace PAWN MACHINE CAPACITY by 1;
$include 'microcosm.incl.pll';
$include 'defs helper.incl.pll’';
$include

initialize_class_pawn_machine:

‘defs_action.incl.pll';

procedure;

%replace PAWN_MACHINE_REQUESTS by 6;

declare a(0:PAWN_MACHINE REQUESTS) entry based;
declare class pawn machine_actions pointer;

declare 1 pawn_|]

machine based %include struct_pawn_machine;

$replace I by CLASS_PAWN_ MACHINE;

Class_Table(I)
Class_Table(I)
Class_Table(I)
Class_Table(I)
Class_Table(I)
Class_Table(I)
Class_Table(I)

.capacity =
.max requests
.alloc_size
.PC_. state _bytes
.known
.opaque_container
.filler

PAWN MACHINE CAPACITY;
PAWN MACHINE _REQUESTS;

51ze(pawn machine) ;

3;

true;

true;

false;

allocate a set(class_pawn_machine_actions);
Class_Table (I) .actions = class_pawn_machine_actions;

Class_Table(I) .actions->a (HELP) = generic_HELP; /* 0 */
Class_Table(I) .actions->a (1) = jllegal; /* 1 %/
Class_Table (I) .actions->a(2) = jillegal; /* 2 */
Class_Table(I) .actions->a(3) = jllegal; /* 3 %/
Class_Table (I) .actions->a(4) = illegal; /* 4 */
Class_Table(I) .actions->a(5) = illegal; /* 5 */
Class_Table(I) .actions->a (MUNCH) = pawn_machine MUNCH;/* 6 */

end initialize_class_pawn_machine;

pawn _machine MUNCH: procedure;
declare 1 self based(selfptr) %include struct_pawn machine;

if (adjacent (selfptr) & self.contents->c(0) ~= NULL) then do;
if (pay to(avatarptr, item_value (ObjList (self.contents->c(
call n _msg_l(selfptr, MUNCH$, avatar.noid);
call n_msg_1l(null(), GOAWAY_ $, self.contents->c(0));
call destroy_ contents (selfptr);
call r_msg_1(TRUE);
return;
end;
call r_msg_1(BOING_FAILURE) ;
return;
end;
call r msg_1l(FALSE) ;
end pawn_machine_ MUNCH;

The following points are worthy of mention:

defs helper.incl.pll is an include file that declares a variety of “helper”
routines that a behavior can call to perform various services. These will be discussed in
greater detail below.

capacity isset to PAWN MACHINE CAPACITY, aconstant that has no counterpart
in class ball. This is because the pawn machine is container (capable of holding 1 object)
and the ball is not.

Note that the actions array has a number of 111legal entries, since the pawn machine
is not a mobile object (i.e., it cannot be picked up and carried).

The pawn machine has one behavior of its own, which is defined here. Notice the
naming convention used for behavior routines: classname_REQUEST. Generic
behaviors (those corresponding to more than one class) have names of the form
generic_REQUEST.

The behavior itself contains many items worth discussing, but we will cover them in
the following section when we explain the execution environment that behavior procedures
live in.

The pawn machine’s struct file looks like this:

/*
* struct pawn _machine.incl.pll
*
* Struct stub for pawn_machine instance descriptor.
*
* Chip Morningstar
* Lucasfilm Ltd.
* 6-October-1986
*
*/
' 2 common_head like instance_head,
2 contents pointer,
2 class_specific '
3 open_flags binary(15),
3 key hi binary(15),
3 key lo binary(15);

The contents field appears only in those objects which are containers. It
is filled in automagically by the regionproc when the container is opened.
This class has class specific fields which are defined here. The fields shown
here are required for any container, though in the case of the pawn machine
they are a formality, since it can never be opened or closed, locked or
unlocked, by a player. (These container-specific fields will be discussed
later in more detail).

The Behavior Execution Environment
In addition to a variety of “helper” routines, which will be discussed in the next section,
there are a number of important elements in a behavior procedure’s execution environment

that require explanation. Most of these are global variables that are declared by the include
file microcosm.incl.pl1l and set by the regionproc before the behavior is called.

$replace THE REGION by O0;
This is (always) the noid of the region object in this region.

A series of string constants of the form st ruct _thingname are defined to enable
easy declaration of common data types. This was discussed in greater detail above.

declare 1 o based %include struct_gen_object;

struct_gen_object is a generic object header that can be used to refer to the

common state information of all objects. The based type o lets us access such information
with minimal fuss.

declare 1 u based %include struct_user;
similarly, there is a “user struct” that contains user information that is pointed to by a

field of avatar objects. This based struct lets us access its fields and thus do rare but
sometimes necessary things that require access to the user’s queue. This struct looks like:

/*

* struct_user.incl.pll
*
* Struct stub for UserList structure.
*
* Chip Morningstar
* Lucasfilm Ltd.
* 9-April-1986
*
*/
’ 2 U_Name character (10) varying,
2 U_Id binary(31),
2 U Q Id binary(31),
2 UuoQ pointer,
2 U_version binary(15),
2 object_slot binary(15),
2 esp ’
3 to_uid binary(31),
3 to_qid binary(31),
3 que pointer,
3 lines binary(15),
2 last_mail _ts binary(31),
2 auto_destination binary(31),
2 auto_mode binary(31),
2 flags ’
3 U mail bit (1),
3 cr_pending bit (1),
3 online bit (1),
3 incoming bit (1),
3 new_session bit (1),
3 ck_last_login bit (1),
3 filler bit (10);

The useful fields are typically U_Name, U_Id, and online. The user structs may be
accessed via

declare UserLlist (UsersPerRegion) pointer;

which points to the various users. You can find out the index into the UserList fora
particular avatar via the avatar object’s avatarslot field.

You can map a noid to a pointer to an object via the global ObjList:
declare ObjList (0:255) pointer;

entries in this list are index by noid and will be nul1l () if there is no object
corresponding to a given noid..

declare c(0:255) binary(15) based;

is declared so we can access the contents of a container object. Container objects
always have a content s field which is simply a pointer to an array of this form. Thus, if
foo is a container object, we can refer to, say, the third item in foo as:

foo.contents->c (2)

note that this value is a noid, not an object pointer. If there is no object in the particular

container slot, this value will be NULL (i.e., 0). To get a pointer to the object itself you
would have to say

ObjList (foo.contents->c(2))

being careful, of course, to make sure that the object exists (i.e., that the pointer from
the ObjList is not null ()) before you try to do anything with it.

declare avatarptr pointer external;

declare 1 avatar based(avatarptr) %include struct_avatar;
declare selfptr pointer external;

declare 1 self based(selfptr) %include struct_gen object;

Before any behavior is executed, avatarptr (and thus avatar) is set to point to the
object record for the object corresponding to the avatar whose C64 issued the request that
we are processing. (Warning: this will be invalid if the user is a ghost.) Similarly,
selfptr (and thus self) is set to point to the object to which this request was sent. By
this means any object can refer to itself as se1f in its behavior code. Often, this
declaration of self is overridden by behaviors in order to make selfptr point to a
different type of struct than struct_gen_object (e.g., a flashlight behavior would
want selfptr to be declared as pointing to a struct_flashlight).

declare request string character (646) varying external;
declare request (258) character(l) defined(request_string);
%replace FIRST by 3;

%¥replace SECOND by 4;

%replace THIRD by 5;

%replace FOURTH by 6;

%replace FIFTH by 7

Before executing the behavior, request_string is assigned the request message
itself (after the telecommunications protocol information is stripped off). request lets us
individually index the bytes of the request. FIRST, SECOND, etc. are defined so that we
can neatly refer to the parameters of the request (remember that the first byte is the noid to
which the request is addressed and the second byte is the request number). Thus, the
second parameter byte of a request would be

request (SECOND)

often (usually, in fact) you will want the byte itself as a number, not as a character, so
you will frequently see the idiom

rank (request (SECOND))
which simply gets the byte as an integer.

The region itself is not represented on the host as an object, unfortunately. Information
about the region is found in various globals. Notable are:

declare Region binary(31);

The current region number.

declare Region_name character(20);

The current region name.

declare total_ghosts binary(15);

The number of ghosts in the region, and the notable sub-struct:

declare 2

WWWwWwWwWwWwWwwWwWwwwwww

full of all kinds of useful information. The global

lighting
depth
neighbor (4)
exit_type (4)
restriction (4)
nitty_bits(28)
max_avatars
owner
entry_proc
exit_proc
class_group
orientation
object count
space_usage
town_dir
port_dir

current_region,

binary(15),
binary(15),
binary(31),
binary(15),
bit (1),

bit (1),
binary(15),
binary(31),
binary(15),
binary(15),
binary(15),
binary(15),
binary(15),
binary(15),
character (1),
character (1) ;

declare DayNight binary(15) external init (0);

contains the global illumination level, which controls whether it is day or night. For the
time being it is always day, but this may change in the future.

Avatar, region and object records each have arrays of general purpose bit-flags called
nitty bits. (Actually, avatars and objects have two sets of flags, nitty bits
associated with the object or avatar record and general flags associated with the
instance head struct.) These bits are available for general use as needed. However,
some are already allocated and you should avoid stepping on them:

/* instance head general flag constants */

%replace RESTRICTED by 1;
%replace MODIFIED

by 2;

The RESTRICTED bit means that the object can’t be taken out of a restricted
region exit. The MODIFIED bit means that the object has been changed and
should be written to the database (it is interrogated when the region is

deactivated).

/* region nitty bits constants */

$replace WEAPONS_FREE by 1;

$replace STEAL FREE by 2;

These make a region weapons free or theft free.

/* avatar nitty_bit constants */
$replace CURSE_IMMUNE by 32
$replace VOTED_] ~FLAG by 3;
$replace GOD_] FLAG by 4;

¥replace MISC_ELAGl by 5;
$replace MISC_FLAG2 by 6;
$replace MISC_FLAG3 by 7;

CURSE_ IMMUNE is used to keep one from being infected more than once.
VOTED_FLAG is used to prevent people from voting twice in an election. GOD_FLAG is
used for superuser avatars. MISC_FLAGS are temporaries.

/* object nitty-bits constants */
$replace DOOR_AVATAR RESTRICTED_BIT by 32;
%replace DOOR | GHOST RESTRICTED BIT by 31;

Setting these on door objects allows you to prevent avatars or ghosts from going
through the door.

Helper Routines

All of the “helper” routines are contained in the Misc directory. Most of them are in
the large file helpers.pll. We will summarize them here.

accessable: procedure (objptr) returns(bit(1l));
given a pointer to an object, returns t rue iff the object is accessable to avatar,i.e.,

if it is adjacent to the avatar or in an open container which is adjacent or in a container
which is in a container which is adjacent, etc.

announce_object: procedure (objptr);
given a pointer to an object, broadcasts a HERE IS message to everyone in the current

region describing the object. Takes care of building the description vector and everything.
For use when you create a new object.

at_water: procedure returns(bit(1l));

Obsolete.
drop_object_in hand: procedure (whoptr);
Takes the object in the hand of the avatar pointed to by whopt r and drops it on the
ground at that avatar’s (x, y) position in the region. If the avatar is empty handed, this is

a no-op. It takes care of sending out messages so everyone in the region knows that this
has happened.

auto_teleport: procedure (whoptr, where, entry mode) ;

Teleports the avatar pointed to by whopt r to region number where using the given
entry mode. Works asynchronously, i.e., this is what you do to move an avatar who isn’t
expecting to be moved. Takes care of informing everyone involved, including the victim
and anyone in the region from which he departs. Allowed entry modes are:

$replace WALK_ENTRY by O;
$replace TELEPORT_ENTRY by 1;
$replace DEATH_ENTRY by 2;

in general, walking should never be used with auto _teleport. DEATH ENTRY
only applies when the avatar is being killed, which you should never be doing yourself
(use kill_avatar instead). In other words, always use TELEPORT ENTRY.

available: procedure(container noid, x, y) returns(bit(1));

Returns t rue iff the container slot (x, y) in the container with the given noid is
empty, i.e., it is available to have something put in it. Ordinarily, the y value is the only
value that matters in terms of indicating container slots. The x parameter only matters with
regions (and for regions available always returns t rue), thus you should usually call
available with an x value of 0 and a y value of whatever container slot you are
interested in.

cancel_event: procedure (event);

Obsolete.

change_containers: procedure(obj_noid, new_container noid,
new_position, checkpoint) returns(bit(1l));

Tries to move the object indicated by obj_noid from its present location to slot
new_position in the container indicated by new_container_noid. If
checkpoint is t rue it will checkpoint the object to the database after moving it. It
returns t rue iff it was able to move the object (moving an object out of an opaque
container increases the C64 memory usage and so will fail if it would overflow memory).

change_region_fail: procedure(who_noid);

This is a procedure that the regionproc calls whenever a region change attempt fails.
Its job is to undo various things that are done in preparation for a region change in the
expectation that it will succeed. Right now all that really needs to be worried about are the
lights, but this routine is a nice hook in case something comes up in the future.

dequeue_player: procedure(whatptr);
Obsolete.

destroy_contents: procedure (containerptr);

Destroys (i.e., removes from the world) all the objects contained in the container object
pointed to by containerptr.

empty handed: procedure(whoptr) returns(bit(1l));

Returns t rue iff the avatar pointed to by whopt r has nothing in its hand.

enqueue_player: procedure(whatptr);

Obsolete.

getable: procedure (objptr) returns(bit(l));

Returns t rue iff the the object pointed to by objptr is “getable”, i.e., if it would be
possible for avatar to pick it up (i.e., it is accessable and it is of a type that it is possible
to pick up).

ghost say: procedure(obj_noid, text);

Like object_say, (see below) but for use when the user is a ghost and so avatar
is invalid.
goto_new_region: procedure(whoptr, where, direction,
Makes the avatar pointed to by whoptr go to region number where with the transition
type (as explained above under auto_teleport)of transition_type. If the avatar
is walking, direction indicates which direction he is going. This procedure is called

for any region transition. For the asynchronous case it is called by auto_teleport.
For the synchronous case it is called by avatar CHANGE_REGION.

grabable: procedure (objptr) returns(bit(l));
Returns t rue iff the object pointed to by ob jpt r may be grabbed from another

avatar’s hand by avatar (i.e., if it is in the hand of an adjacent avatar and is of a type that
is allowed to be grabbed).

holding: procedure (objptr) returns(bit(1l));

Returns t rue iff avatar is holding the object pointed to by objptr.

transit

holding_class: procedure(class_number) returns(bit(1l));

Returns t rue iff avatar is holding an object of class class_number.
inc_record: procedure (whoptr, record);
Increments (by 1) the Hall of Records entry for record record and avatar whoptr.

item value: procedure (itemptr) returns(binary(15));

Returns the intrinsic value (e.g., what a pawn machine will pay for it) of the object
pointed to by itemptr.

kill avatar: procedure(victimptr);

Kills the avatar pointed to by vict imptr. Takes care of notifying all interested
parties, including the victim. Works asynchronously.

lights_off: procedure (whoptr);

Turns down the lights in the current region on the assumption that the avatar pointed to
by whopt r is leaving (lights go down if he is carrying a lit flashlight out of the region).

lights_on: procedure (whoptr);
Turns the lights back up.

lookfor_string: procedure (sourcestring,substring) returns(bi
Like index, but performs a case-independent match flashlight out of the region).

lights_on: procedure (whoptr);
Turns the lights back up.

lookfor string: procedure (sourcestring,substring) returns(bi
Like index, but performs a case-independent match.

lowercase: procedure (mixedstring) returns(character(256) var

Returns a copy of the string mi xedst r ing with all upper case characters converted to
lower case.

max_record: procedure(whoptr, record, value);

Sets the Hall of Records record for record record and avatar whoptr to the
maximum of its current value and value.

object_broadcast: procedure(obj_noid, text);

Broadcasts an OBJECT _SPEAK message to everyone in the region to make the object
obj_noid say in a word balloon the string text.

object_say: procedure (obj_noid, text);

Sends an OBJECT_SPEAK message to the current avatar (only) to make the object
obj_noid say in a word balloon the string text.

pay_to: procedure (whoptr, amount) returns(bit(1l));
Try to pay amount tokens from avatar to the avatar pointed to by whopt r. Returns
true iff it was able to do this (i.e., if avatar had sufficient tokens in hand to pay the
amount).

random: procedure(top) returns(binary(15));

Returns a random number in the range from 1 to top.

random_time_in_the_future: procedure returns(binary(31));

Obsolete.

region_entry daemon: procedure(direction, transition_type,

old_orientation, from_region);

Called by the regionprocon entry to a region. This is the place to put any reglon
entry-dependent actions. direction is the direction the avatar is walking, if he is
walking. transition_type is the transition type. old_orientation is the

orientation of the region departed from. from_region is the region number of the region
departed from.

schedule event: procedure(objptr, event_procedure, delay)

returns (pointer);
Obsolete.
set_record: procedure(whoptr, record, value);
Sets the Hall of Records record record for avatar whopt r to value value.
spend: procedure (amount) returns(binary(15)):;

Tries to spend amount tokens (out of hand) on behalf of avatar. Returns 0 if
unsuccessful, 1 if successful.

spend_check: procedure(amount) returns(bit(1l));
Returns t rue iff avatar could successfully spend amount tokens out of hand.
tget: procedure (tokenptr) returns(binary(31)):;
Returns the denomination of the token object pointed to by t okenptr.
tset: procedure (tokenptr, amount);
Sets the denomination of the token object pointed to by t okenptr to amount.
unescape_string: procedure(string);

Expands all the Ghu character string escape sequences (\etc) in the string string
(used in God-tool magic).

vectorize: procedure (objptr) returns(character(256)

Generates a contents vector for the object pointed to by objptr.

wearing: procedure(objptr) returns(bit(1));

varying)

Returns t rue iff avatar is wearing the head object pointed to by ob jptr.

More Helper Routines: Sending Messages

To facilitate telecommunications, a variety of messaging routines are defined in
Misc>messages.pll. These send messages from the host to the C64. There are many
of these routines, but they fall into four functional groups. Within each functional group,
the routines are distinguished only by their parameters (in fact, if PL/1 had a variable
argument-count procedure call mechanism, there would only be four routines at all).

n_msg_XXX: procedure(to_objectptr, msg number, args...);

Sends message number msg_number with arguments args... to the object pointed to
by to objectptr on all C64’s i in the region EXCEPT the one belonging to avatar.

Le., n_msg == “neighbor message”. If to_objectptr is null (), the message is sent
to the region object.

b_msg_XXX: procedure(to_objectptr, msg_number, args...);

Similarly sends a message to all C64’s in the region with no exceptions. I.e.,b_msg
== “broadcast message”.

p_msg XXX: procedure(to_objectptr, to_whomptr, msg number, a

This one sends the message only to the machine whose user is the avatar pointed to by
to_whomptr. If to _whomptr isnull(),it assumes that you mean the current avatar
but that the current avatar is a ghost. Le., p_msg == “point-to-point message”.

r_msg_XXX: procedure(args...);
Sends a reply message to the current request to the currently requesting avatar.

In all of the above, XXX determines the format of args. ... XXX is either a digit, in
which case args. . consists of that many integer (bin (31)) arguments, or a digit
followed by * s’,in w}uch case args. . . consists of that many integer arguments
followed by a smgle character string argument. For example,

n_msg_0: procedure(to_objectptr, msg_number);
n_msg_l: procedure(to_objectptr, msg number, argl);
n_msg_2: procedure(to_objectptr, msg_number, argl, arg2);

n_msg_2_s: procedure(to_objectptr, msg_number, argl, arg2,

n_msg_s: procedure(to_objectptr, msg_number, argstr);
etc.

More Helper Routines: Width and Collision Detection

A small number of routines relating to collision detection have been isolated in the file
Misc>width.pll. These are separate because they have a large run-time table that they
must refer to. This table describes the graphic characteristics, in terms of size and
placement, of all the various objects. It is generated automatically by our C64 disk database
generation tools which create the include file width.incl.pl1 thatis included here.

a

adjacent: procedure (objptr) returns(bit(l)):;
Returns true iff avatar is adjacent to the object pointed to by objptr.
check_path: procedure(target noid, x, y, new_x, new_y,

Performs a collision detection check on a trajectory from location (x,y) to the object
object_noid. The trajectory is a city-block path, i.e., all horizontal movement followed
by all vertical movement. new_x and new_y are where we wound up. They will be the
same as x and y if there was no collision, or the point of collision if we hit something. It
will first try vertical-then-horizontal movement. If it hits something it will then try
horizontal-then-vertical movement. If the second try succeeds, it will set £1ip_path to
t rue to indicate that this happened.

elsewhere: procedure(objptr) returns(bit(1l)):;
Returns t rue iff the object pointed to by objptr is neither adjacent nor accessable.
here: procedure(objptr) returns(bit(1l));

Returns t rue iff the object pointed to by ob jpt r is adjacent, accessable, or in hand.

More Helper Routines: Bit Manipulation
Since PL/1’s facilities for performing bit manipulation on integers are dreadful, we
have written some routines to do this for us. All of the following operate on bin (15)
integers, NOT bit strings. These are defined in Misc>bits.pll.

clear bit: procedure(num, the_bit);

Clears (sets to 0) bit number the bit in num (bits are numbered with the least
significant bit as 0 and the most significant bit as 15).

set_bit: procedure (num, the_bit);
Sets (sets to 1) bit number the bit in num.

test_bit: procedure(num, the_bit) returns(bit(l));
Returns t rue iff bit number the_bit of numis 1.

and_bit: procedure(numl, num2) returns(binary(15)):
Does a bitwise AND of num1l and num2 and returns it.

or_bit: procedure(numl, num2) returns(binary(15));

Does a bitwise OR of numl and num2 and returns it.

flip_

More Helper Routines: Capacity Monitor

A series of procedures maintain a model in the host of the C64’s memory capacity
utilization. They use the include file capacity.incl.pll which is generated by our
C64 disk database creation utilities. These routines are defined in
Misc>capacity monitor.pll.

note_object_creation: procedure(class_number, style);

Notes that an object of class class_number and style style as been added to the
region.

note_object deletion: procedure(class_number, style);

Similarly notes the removal of such an object.

reconstruct_memory usage: procedure;

Rebuilds the memory usage model from scratch.

We have not describes the remaining routines in capacity_monitor.pll because
they are local to that file only.

Generic Actions

Many different classes of objects have, at least in part, the same behavior. For the
common cases we have created separate generic behavior procedures. These live in the
Act ions directory and are grouped into files functionally. Because of a problem with the
Stratus debugger, we needed to somehow reduce the number of object files that were
linked into the program, so the Act ions files are handled in a way that is a little peculiar:
There is a file named actions.pl1 which simply % includes the various sources.
Since the brain-damaged Stratus PL/1 compiler insists that include files must have names
ending in . incl.pl1, there are a bunch of .incl.pl1 files in Actions directory which are
simply links to the corresponding .p11 files. Here is what is here:

actions_clothing.pll:

generic_WEAR

generic REMOVE
Behaviors for putting on and taking off “clothing”. The reference to
“clothing” is historical. All that is left to put on or take off are heads,
which use these routines.

actions_container.pll:
generic_CLOSECONTAINER
generic OPENCONTAINER
Behaviors for opening and closing containers. These worry about locks and keys too.

actions_door.pll:
generic_CLOSE
generic OPEN
Similarly, behaviors for opening and closing doors.

actions_gpt.pll:
generic_GET
generic_PUT
generic THROW
The most common behaviors of all, for picking up, putting down, and throwing
objects.

actions_help.pll:
generic HELP
Behavior for getting help. Objects which only require a fixed-string help message use
this. The bulk of this procedure is a giant text array with one entry for each possible class.
I’'m sure this wastes a lot of memory, but PL/1 doesn’t allow us to declare static text arrays
properly. More on help below.

actions mail.pll:
generic_READMAIL
generic SENDMAIL

Behavior for mail. Obsolete, I think.

actions_oracle.pll:

generic_ASK
Behavior for talking to oracular things.

actions_switch.pll:
generic_OFF

. _generic_ON]
Behavior for turning switchable objects on or off.

actions_weapon.pll:
. _generic_ATTACK
Behavior for using weapons.

Major Subsystems

There are three major subsystems underneath the behavior code which are complex
enough to deserve special discussion on their own. These are the mechanisms for magic,
sensors and drugs; the help system; and the “curse” system.

Magic, Sensors and Drugs

Magic objects, sensors, and drugs all employ essentially the same mechanism. These
classes are distinguished by the fact that a given type of object can have one of a number of
possible (very different) behaviors. In each case, the object record contains a type number
that indicates just exactly what sort of magic item, sensor or drug the object is. This
numbser is used as an index into an array of procedure entry points which fans out to a
number of procedures which then implement the specified function. Beyond this, there are
some slight differences between the three types of variable-behavior object:

Sensor routines live in Classes>class_sensor.pll. The dispatch array is
initialized by the procedure initialize_sensors which must be called by the
regionproc at system start-up time. The sensor routines are called by the class sensor

behavior routine sensor_SCAN. Such routines should look about the region for some
characteristic of interest and then return a 1 or 0 depending on whether or not they find it.
This success/failure value is then transmitted back to the C64 by sensor_SCAN.

Drug routines live in Classes>class_drugs.pll. The dispatch array is
initialized by the procedure initialize drugs which must be called by the
regionproc at system start-up time. The drug routines are called by the class drugs
behavior routine drugs_TAKE. By convention, such routines should take some action
effecting the player’s avatar avatar. In general, they should not effect anyone else’s
avatar or the region environment. Drug routines do not have to worry about sending a
response message to the player, as this will be taken care of by drugs_TAKE, though they
DO have to worry about sending any asynchronous notification messages regarding any
specific actions they perform. drugs_TAKE also worries about whether there are any
pills left in the pill bottle when the user tries to take one, and about decrementing the piil
count after one is taken.

Magic routines live in Misc>magic.pll. The dispatch array is initialized by the
procedure initialize magic which must be called by the regionproc at system
start-up time. The magic routines are called by the generic behavior routine
generic MAGIC which, violating the above described conventions about the Act ions
directory, is also located in Misc>magic.pll. generic_MAGIC sends out an
unconditional success response and dispatches to the appropriate magic routine. Thus,
magic routines are running free of the C64 which has already received a response to its
request. This is significant if the user issues some other request in the meantime (such as
leaving the region).

There are actually two types of magic objects, “switches” and portable magic items. In
the case of the latter, a parameter is supplied by the C64 when requesting magic action that
is the noid of the object or avatar at which the player is pointing with his cursor when he
issued the request. This allows the action of magic objects to be directed at or against
something specific. The helper routine

avatar_target_check: procedure(targetptr) returns(bit(l));

is defined in Misc>magic.pll to check if the thing pointed at by the user is another
avatar, since frequently one wishes to have magic which operates on avatars only. The
range of possible actions that a magic routine may take is almost unlimited; the interested
reader is advised to look at the source file Misc>magic.pll itself for examples of the
sorts of things we can and do do with magic.

Curses

A less important but still significant sub-system is the curse mechanism. This is what
we use to implement “cooties” as well as other sorts of plagues. A curse tem, ily
modifies the attributes of an avatar. Each avatar record has two fields for dealing with
curses, curse_type and curse_count. Normally, curse_type is 0, meaning no
curse. However, if curse type is not 0, the avatar has some temporary attribute that he
is (probably) trying to get rid of. An avatar becomes cursed by a mechanism that varies
with the type of curse. Typically it is started by some sort of magic. The routine that starts
the curse must set the curse fields appropriately. To help, the file Misc>curses.pll
defines the procedure)

activate_head_curse: procedure(victimptr, curse_type)

This procedure attempts to inflict the curse curse_type on the avatar victimptr.
It returns t rue iff it succeeds. This procedure specifically deals with curses whose
manifestation is a weird head of some sort. It takes care of notifying the player that he has
a new head.

Curses are typically contagious. The transmission of curses is handled by the routine
curse_touch: procedure (curserptr, curseeptr);

which is called by avatar TOUCH when one player tags another while cursed. This
routine transmits the curse (if it is contagious) from the avatar curserptr to the avatar
curseeptr and decrements (if appropriate) curserptr’s curse count field. When
this counter runs down to zero the curse is removed and the avatar’s old head is restored.
By the way, when an avatar loses a curse a bit is set in the avatar record that makes him
immune to getting it again until we reset the game. Of course, the curse is only transmitted
by a tag if the victim is not himself immune by this means.

By controlling the initial setting of curse count when an avatar is given a curse,
you can manipulate the nature of the spread. Setting it to one gives a curse that passes from
player to player, such as cooties. Setting it to a small number (such as two) causes a
plague that spreads exponentially. Setting it to a large number causes it to infect the whole
population eventually.

Both the above mentioned routines in Misc>curses.pll have case statements in
them that vector on the curse type, so that curse specific actions may be taken.

Help

The help system is invoked when the player presses the F7 key. The basic action to be
taken by any help behavior is simply to send out a response message with a character string
of up to 114 characters in length. However, owing to the variety of things we might want
to say about an object in its help message, there are a number of complications.

If the help message associated with a particular class of object can be expressed in a
string of up to 114 characters whose text never changes, then you should set the class’s
HELP behavior to generic HELP. generic HELP contains an array of strings,
which it indexes by class number. When called, it looks up the object’s class and transmits
the appropriate string. There are a few special purpose entries in this array, however. If a
class does not exist its help array entry should be '-'. If a class exists but does not use the
generic_HELP routine, its help array entry should be 'i'. In both cases it triggers an
error diagnostic, since these help messages should never be encountered. If you haven’t
gotten around to figuring out what a class’s help message should be, setitsentryto 'u’.
This will give an appropriate apology for there not being any help. Finally, if an object is a
non-functional scenic object, set its help entry to 's . This will give help that describes
how to use HELP.

If an class’s help information cannot be expressed in 114 characters or if it must vary
depending on other state information, then the class needs its own help behavior. Long

return

help messages can be accomplished simply by breaking the help text into multiple
messages. The first is a response message that answers the HELP request itself, while the
remaining messages should be sent with calls to object_say. Variable content
messages can simply be built up as needed and sent via the same means.

Certain types of objects have HELP information requirements which are more complex
still. In particular, classes which exhibit large stylistic or functional variations require
special treatment. Such classes include drugs, sensors, knick-knacks, and all magic items.
These classes have arrays complex still. In particular, classes which exhibit large stylistic
or functional variations require special treatment. Such classes include drugs, sensors,
knick-knacks, and all magic items. These classes have arrays of messages of their own
which are indexed by style, magic type, or whatever other parameter is appropriate for the
class in question. When adding a new type of magic or a new sensor, then, you must also
add an entry to the appropriate help text array. By the way, it is our convention that the
help for sensors and drugs should be descriptive while the help for a magic item should be
phrased as a riddle or cryptic remark that only hints at what the magic item does.

The final complexity is introduced by vending machines. Vending machines issue help
message which describe not only how to use the vending machine but what it is that is for
sale. As with generic_HELP, vendo_HELP (located in
Classes>class _vendo front.pll) maintains an array of help messages. This
array is index by the class of the object on display in the vending machine. It works pretty
much just like generic_HELP except that the messages are limited to 80 characters.
Also, like generic_ HELP, there are some special entries in the array which cause special
action to be taken. Not only do we have to deal with non-existent classes and such, but the
problem of the variability of knick-knacks, magic items, and so forth creeps up on us once
again. To handle these cases, a number of procedures with names of the form
classname_vendo info are defined which return appropriate character strings based
on a pointer to the object on display. vendo HELP calls these based on the entries in the
vendo help message array. Here are the special entries in this array:

-' means that the object class does not exist. Hitting such an entry is a run-time

system error.

'i' means that the object is a class that may not be placed in a vending machine.
Hitting such an entry is a run-time system error.

'b' uses whatever is returned by book_vendo_info

'd"* uses whatever is returned by drugs_vendo_info

'm' uses whatever is returned by magic_vendo_info

'k ' uses whatever is returned by key_vendo_info

's ' uses whatever is returned by sensor_vendo_info

In the case of drugs, magic and sensors, the information used by the
xxx_vendo_info routine and the information used by the xxx HELP routine comes
from the same array which does double-duty.

What To Do When Sister Picks Up the Phone
and solutions to other multi-user network game design problems
by
F. Randall Farmer

There are several tough questions that arise when designing a multi-
user telecommunications game like Lucasfilm's Habitat. Most seem to have
obvious solutions. But after (or during) implementation & testing you often
discover that your 'ideal' answers to the problems 1) are simply wrong 2)
severely unbalance gameplay or 3) cause even WORSE problems than the
original! In this document I will attempt to recall some of the "solution-
histories” of these various "tough questions” as applied to Lucasfilm's
Habitat.

The Metaphor, a misunderstood, over-used tool for game design:

The Habitat design was built on a "real-world" metaphor. There would
be houses, money, human-like figures, guns, malls, shops, streets, clothing,
mailboxes, plazas, cars, parking meters, telephones, busses, doorbells, trees,
grass, bushes, beaches, courtrooms, police, criminals. On top of this were to
be added fiction and fantasy elements like teleport-booths, techno-gadgets
magic wands, shovels, escape devices, crystal balls, magic lamps, 'gods' and
others to be added as the system grew. This metaphor was chosen for it's
ease of reference for the customer. Everybody would have some idea how
Habitat should work because it worked just like the real world.

b

It was a big mistake. We promised too much. Even God took 6 days. This
metaphor presented us with twofold confusion: 1) How can you describe to
others "what it is", and 2) It turns out that the real-world has reasons for
it's various institutions that DON'T APPLY in a computer network. Here are
some examples of real-world/game-world clashes:

Transportation: Cars and Busses get you from place to place faster than
walking. We had teleporters, so who needs cars? Well, you might WANT
a car to get to places that has no teleports. The problem turns out to be
that walking and driving would take place at about the same speed! And
not only that, a graphic image of a car would take us GOBS of space in the
home computer.

Solution: Elimination of cars/busses & further refinement of the teleport
system to include the 'home' feature to return an avatar to his home turf.

Communications: We were steadfast in our desire to use telephones for on-
line-messages and mailboxes for mail. We were really wrong here.
(Quantum was right on this design issue!) We lost sight of the real goal by
looking through the grey-goo of our metaphor. The goal is to increase
interaction at all costs! Interaction is the single largest key to Habitat's
potential success.

Solutions: OLMs became ESP (a metaphor to fit the solution) and mail is
delivered directly to a users 'pocket’. The text interface was modified so
that any sheet of paper could be sent as mail.

What to do when sister picks up the phone:

Disconnect. End of game. A fact of life in telecommunications. There are
5 possible causes of a disconnect:

Intentional, Normal Log out (chosing quit)
Intentional, Abnormal Log Out (yanking the phone/ power down)

a) when alone or for no 'gain’

b) for gain, or to avoid loss (of life, money, stature, account, whatever)
Unintentional, Abnormal Log Out (power failure, sister pulls phone, etc.)
Unintentional,Host system shutdown (never supposed to happen, right?)

Only the first and last causes are detectable. There is no way to tell if a
user got disconnected by accident or on purpose!

"Stick-um up! Give me all yer money or you get free lead ear piercing!"
>click!< (the sound of the victim turning his computer off). What happens
on the criminals screen? Is it Fair? What should happen to characters
whenever its human is not on-line?

Our first answer was when there is any logout the character 'turns to
stone', becoming a statue standing in his last known location. This would
not occur in your 'turf or 'hotels' where you would go to 'sleep'. The idea
was that people could still interact with you (one sided) even when you
were off-line. During early alpha testing, it became clear that this was yet
another mistake. First, unintentional disconnects were unfair, because
often people couldn't get back on right away, and lost whatever they had
in hand. Second, the world was soon littered with stoned avatars and we
re-encountered an old specter:

Overcrowding, Traffic Jams, Blockades and Public Assemblies

We implemented the system on a toy computer, with 64k and a 1mhz
clock. We could only draw "so many" objects per frame and "so many"
turned out to be 2-3 foreground objects, 6 avatars and their stuff. We
knew this very early, so we designed around it. Early on we thought that
traffic jams would be a feature instead of a headache. Groups of people
could get together and bar entrance to a place. Yeah! That would be neat!
Forced interaction. We even planned a 'shout' feature that would let you
yell into the next region so you could talk to blocked regions.

But those damn blasted stone statues kept collecting in the favorite
meeting places, and it was hard as hell to design a city that was both small
and difficult to 'clog up'. We had also missed the boat on group activities of
over 6 persons. We couldn't have any!

Solution: 'Ghosts'. We invented a state where a user could watch the
interaction in a region and leave, but not effect the region in any way. In
this manner, there would never be a region you couldn't get thru because
you could always turn into a ghost & there was ALWAYS room for a ghost.
To resolve some of the 'fairness' issue we allowed people to become ghosts
at ANYTIME, and allow them to 'de-ghost’ whenever there is room. If you
ever disconnected NO MATTER WHAT THE CAUSE you were turned into a
ghost, and were safe. Also, since there could be any number of ghosts in
the room (no increased animation time) we could host public assemblies in
Habitat.

'Problems' with this solution: You might think 'Well, if you are safe as a
ghost, and you can become one at any time... where is the danger of harm?
It turns out that this is no problem at all. Dozens of people during the
Alpha and Beta tests died during shootouts and robberies. The cost of
losing your life is small (a free trip home and loss of pocket contents) and
the value of personal interaction is high (you can do NOTHING as a ghost).
There are a few things that make it still work: 1) It takes several hits with
a weapon to kill 2) if you turn into a ghost, anything you have on the
ground is available for other to pick up 3) you might be able to (with
others help?) kill him first!

It works! We did it! And people will pay to play it!

We got Habitat to run on a Commodore 64! This is undoubtedly the most
complex program ever written for this computer. The designer made it
possible. Chip Morningstar designed a program built on 'big-system'
principles like distributed-processing, virtual-memory, object-based
programming, and multi-processing. Say those words in the same sentence
with Commodore 64. We did. It works but it was close. At least 3 times the
program had to be significantly altered because the C64 did not perform to
spec.. Habitat 'just barely' runs on a C64, and would NEVER run on an
Apple II

Habitat Anecdotes

and other boastings

by
F. Randall Farmer

Actually, the word “anecdote” comes from a Greek word that means
“unpublished”. | guess these anecdotes are now “stories”.

Preface:

These stories are hopelessly intermingled. 1 wish this were a
hypertext document so | could link them all properly. It's not, so, if you

find an interesting topic, feel free to skip around as the “see:” notes
direct.

The People:

The entire point of Habitat is The People. It is an interactive
environment where people define the parameters of their experience. Chip
likes to call it “A Social Crucible”: throw some people in a room with
some fun toys, and see what happens. If a situation arises that requires
modification, first let them try to sort it out —avoid changing the rules—
and if they can't, take their input on how to change things. From this, it is
clear that to understand Habitat, we must first understand its users.

There are basically 5 types of people in the Habitat universe:

1) The Passive

2) The Active

3) The Motivators

4) The Caretakers

5) The Geek Gods (system operators)

The Passive:

Easily 50% of the number of users fall into this category, but they
probably use only 20% of the connect time (rough estimates). They tend to
“‘cross over” to Habitat only to read their mail, collect their 100t bonus,
and read the weekly newspaper. They tend to show up for events ad-hoc
and when the mood strikes. This is the most important area for
development. Special events and activities need to target this “on for
just a few minutes” group. This group must be lead by the hand to

participate. They tend to want to “be entertained” with no effort, like
watching TV. The trick here is to encourage active participation.

The Active:

This group is the next largest, and made up the bulk of the paying user-
hours. The active user participates in 2-5 hours of activities a week.
They tend to log into Habitat right after connecting. They send out ESP
messages to others on-line to find out what is going on. They ALWAYS
have a copy of the latest paper (and gripe if it comes out late). This
group’s biggest problem is overspending. They really like Habitat, and lose
track of the time spent “out there”. The watch word here is “be thrifty”.
(See Events:Quests for more on this)

The Motivators:

The real heros of Habitat. The Motivators understand that Habitat is
what they make of it. They set out to change it. They throw parties, start
institutions, open businesses, run for office, start moral debates, become
outlaws, and win contests. Motivators are worth their weight in gold. One
motivator for every 50 Passive/Active users is wonderful. Nurture these
people.

The Caretakers:

Usually already employees. The Caretakers are “mature” Motivators.
They tend to help the new users, control personal conflicts, record bugs,
suggest improvements, run their own contests, officiate at functions, and
in general keep things running smoothly. There are far fewer of these than
Motivators. Out of a Pilot group of about 400, we had 3. What you want to
do with a Caretaker is groom him for Geek Godhood.

The Geek Gods: (Not a spelling error)

| was the first Oracle/Operator. (I talk about that experience in Gods).
The operator’s job is most important. It really is like being a Greek God
from the ancient writings. The Oracle grants wishes and introduces new
items/rules into the world. With one bold stroke of the keyboard, the
operator can create/eliminate bank accounts, entire city blocks, or the
family business. This is a difficult task as one must consider the
repercussions of any “external” effects to the world. Think about this:
Would you be mad at “God” if one day suddenly electricity didn’t work
anymore? Habitat IS a world. As such, someone should run it that has
experience in that area. | suggest at least 10 years experience in Fantasy
Role Playing and 2 years on telecommunications networks (specifically
ones with CHAT programs). A Geek God must understand both consistency
in fictional worlds, and the people who inhabit it.

To optimize the Habitat “funativity” experience, the goal is to move
the user from his/her present category to the next one up:

Passive->Active->Motivator->Caretaker->Geek God.

Move everyone one role to the right, and you will have a successful, self
maintaining system. (Read: you will make bags of money.)

Real Money:

The Habitat Beta Test was actually a paying pilot-test. The testers
would be paying $0.08 per minute to play and in this way we could see if
Habitat was financially feasible. There were exceptions; about 25% of the
testers would be QLink staff, who either had free accounts or were given a
certain number of free hours. This distinction caused some difficulty in
deciding if any Habitat activity was a success (see Events). We wanted
to see if Habitat was fun enough for paying customers.

Read these (don’t forget to read between the lines):
A certain user posted this message (edited for brevity):

As of today | am quitting Habitat. It costs too much.

I have been a Q-Link subscriber for 2 years.

The first year | used only 2 plus hours. ($10)

The next year | used only 5. ($25)

But in the last month, while | was playing Habitat | spent $270!!!
| can't afford that. You need to make it cheaper.

$270 = 57 hours or over 100 times his previous peak usage!
We must have made it “too much fun/”

another user said:
“l didn’t realize that | was going to want to play 50 hours/month!”

Habitat (for some) was addictive. Because of this, there was a call for
“Bulk Discounts” and various schemes were proposed by the users. None
of them were implementable, and all of them would have resulted in

significant losses. | fully expect the call to go out again when it is
released.

Yet another spent over $1000 in one month in Habitat. At around $300 and
$600 dollars, he was mailed a message suggesting he “check out his usage
in the billing section”. If we could get 20 more of this type of “rich”
user, we would be profitable!

Habitat Money:

The Habitat official currency is the Token. (Chip’'s story of this choice
of terminology goes here).

This is the economic model: You are “hatched” with 2000t, and every day
you log in, you receive 100t. Money can be won in contests/quests. You
can buy and sell objects using automated machinery. The Vendroid sells
stuff. The Pawn Machines buy it back. Each Vendroid makes the purchased
item out of thin air. That's right, no production costs. This leads to an
interesting problem of runaway inflation. We never got enough people in
the system to understand this effect, but got a taste of in when “The
Great Scam” happened:

The Scam:

During the Alpha test, “The Big Doll-Crystal Ball Scam” took place. In
order to make the automated economy interesting, we made Vendroids so
that the could have any price for any item. This was so we could have
local, specialized economies (i.e. a widget could cost a little less if you
bought it at Jack’s Place instead of The Emporium). In two vending
machines across town from each other were two items that were for sale
for less than the pawn machine would buy them back for: Dolls (for sale at
75t, hock at 100t) and Crystal Balls (for sale at 18000t, hock at 30000t).
One weekend several persons participated in the Scam, they took their
money, purchased many boxes, walked to the Doll Vendo and bought as
many as they could afford, walked back to town and pawned them. They
repeated this process until they had enough to purchase Crystal Balls.
This took many hours. The final result was at least 3 people with
100,000t - 500,000t. In one night the economy had been diluted as the T1
(the Token Supply) has jumped 5 times! (for more on this Scam, see Geek
Gods:They Cheated!).

The new rich class now began to distribute their wealth by having
treasure hunts. There were other quests and hunts that gave many users
fat bank accounts. Soon a true economy began to emerge: Heads. Since you
can change heads in Habitat, and unique heads were often prizes or gifts
from the oracle or very expensive, their value skyrocketed. This would

definitely be true when thousands of users came along, as there are only
200 or so styles of heads, and each user is initially given a choice from

about 30 of those. Heads are the only obvious form of customization an
Avatar has.

The lIssues:

As | have said before, Habitat is a society, and as such, has spawned
many debates about how the Habitat world should be. Very few “rules”
were imposed on the world from the start.

A theme at the core of many of the arguments is philosophical. Is an
Avatar an extension of a human being, a Pac-man like critter — destined to
die 1000 deaths — or something else. Our answer is all of the above and
none. Again the people decide what is right. In reading about the issues,
keep in mind that our sample was very small, and skewed towards Actives
and Motivators.

At first, during early testing, we found out that people were taking
stuff out of others hands and shooting people in their own homes. We
changed the system to allow thievery and gunplay only in non-city regions.
(That one was easy! It gets more complicated from here)

Dial H for Murder:

The hottest issue was, by far, murder. In Habitat, if an Avatar is
“killed” he is teleported back home, with his pocket emptied, what he was
holding dropped, his hit-points restored, and his head put in his hand.
However, only what he had with him and his position in the universe has
changed. One of the Motivators took to randomly shooting people roaming
outside of town. A debate arose: Is Habi-Murder a crime? Should all
weapons be banned? Is it all “just a game”? There was such a debate on
the issue, that a vote was taken. We were surprised by the results. 50%
said “A crime” and 50% said “no — it is part of the fun”. Our outlaw had in
fact demonstrated that human-human interactive combat was fun for over
half the audience. And since anyone who didn"t want to fight could just

“ghost” and run away, there was no reason to consider the banning of
weapons.

The Order of the Holy Walnut:

One of the outstanding proponents of the anti-violence-in-Habitat view
was also the first Habitat Minister. A Greek Orthodox Minister opened the
first church in Habitat. His canons forbid his disciples to carry weapons,

steal, or participate in violence of any kind. It was unfortunate that | had
to eventually put a lock on the Church's front door because every time he

decorated (with flowers), someone would steal and pawn theme while he
was not logged in!

Wedded Bliss: .

Three Habitat weddings took place in that church. These were not
human-human weddings, but Avatar-Avatar. Their turfs were joined so
that they could cohabit. There were some technical problems with this
that should be resolved in any new versions. Only one account could enter

a turf if the owner were not home. We hadn’t properly handled
cohabitation.

The first Habitat divorce occurred 2 weeks after the 3rd wedding. |
guess Habitat is a bit too close to the real world for my taste! The 1st
habitat lawyers handled the divorce, including public postings all about
town.

Entertaining the neighbors:

The Party was one of my favorite activities. | liked to throw them at
new Avatars’ houses. | would ESP a known “Passive” Avatar, and ask him
where he lived. If he told me, | would send ESP to “Actives” and
“Motivators” that were on-line teleport to the address. Great fun.

A close cousin to parties was the Sleep-Over. The users invented this
on their own. Often private discussions would take place in a turf. It was
considered a minor social honor to be invited to sleep-over. This meant to
log-out while still in another's turf. This was an honor because you would
be able to log in later even if the host was not on. This would leave the
host’s belongings open to plunder.

More on Stealing:

Speaking of plunder... Stealing is still possible, even within city
limits, as once an item is placed on the ground, it has no owner. Like
murder, opinions on this issue are deeply divided and we think the best
way to resolve it is to let (help) the players devise a limiting mechanism.

Secret Identities:

Iin the original proposal, all Avatars would be able to have unique names
(separate from their log-in names) and they could say they were anybody
they wanted. Like a big costume party, no one would know who was who. |
lost the battle for unique names, and Quantumlink wanted an “identify”
function. It seemed the anonymity | wanted was lost. But | suggested a

counter-proposal. A tit-for-tat rule. If you “peek” at someone else’s
secret identity, you will be unmasked to that Avatar, and no one else
would know the results. Some very interesting dynamics developed. Some
people were offended if they were ID’ed right away. And others never
bothered, if you said “Hi! I'm WINGO”. | remember one time that |
convinced someone that | was another person by sending ESP as “myself”
to the person in the same regio.

Business:

The economy was a minor issue. Most everybody had plenty of tokens
(except the Passives). In an attempt to open the retail business to
Avatars, a Drug store was opened, with a locked room in back that only the
owner could enter that contained the only vendo that sold Habitat healing
potions and poisons. The shopkeeper would pay the fixed price, and could
charge whatever he wanted for resale. It was a success except for the
fact that the owner logged in at strange hours.

To Govern or Not to Govern:

Our design directive was not to interfere in Habitat politics or set up a
government or law establishment. Many people thought that crimes of
killing and theft ought to be punished. We decided to hold sheriff
elections. The favorite candidate was a friendly guy, but many didn't
know that this very same Avatar was the brains behind “The Scam”. There
was a public debate in the Populopolis Meeting Hall with the 3
AvaCandidates making statements and fielding questions. | was among the
ghosted attendees. | would pre-type some comment like “Vote for Foon!”,
deghost quickly, press return to send my message, and become a ghost
again. No one would have any time to tell who | was before | was gone.
This was fun. During the Question and answer period | pretyped this
question: “Please explain to us why we should vote for a sheriff who
obtained his campaign fees rather -ah- UNUSUALLY?". This started a real-
life-like mud slinging fight. As it turns out, he won by a landslide
anyway. Populopolis had a sheriff.

For weeks he was nothing but a figurehead. We were stumped about
what powers to give him. Should we give him the right to shoot anyone
anywhere? Give him a more powerful gun? A wand to >zap< people to
jail? What about courts? Lawyers? Laws? Late in the test the answer
struck me: ask the users! A “Committee for a Safer Habitat” sent out a
mailer to everyone asking this question: “What should the sheriff be able
to do?”. Then another election was held “What is a crime?” and "What
should the sheriff be empowered to do?”. The results were unable to be
acted on before the test ended. An interesting side effect of this was that

it became apparent there there are two basic camps: anarchy and
government. It will be great to see what happens with thousands of users
facing this decision. Habitat need not be set up with a “default”
government (like reality).

Magic Inflation:

Besides economic inflation, we also had Magic inflation. In the Dungeon
of Death (see EVENTS), the designer had a vending machine that sold magic
wand that teleport to the oracle anyone you point them at for only 1000t.
At this time magic wands worked forever. Soon everyone had one of these
wands and people were zapping each other all over the place. Crime got
really out of hand when criminals would travel as ghosts, wait for people
to put their belongings down for a second, deghost - zap - and steal. | had
always planned on implementing a limited “charges” feature but was to
busy tracking down bugs. Soon it was clear it was time to act. “God”
changed the rules, and limited magic. The issue became foremost in the
discussion arena: Some people were using these rods for the “good” cause
of rescuing people when they got lost. Many were outraged that the rules
changed. Ask yourself this question: What would you have done? This is a
tricky question, fundamental for the chief operator to understand.

Motivators & Caretakers at work:

The Rant:

By far the Caretaker who had the greatest on his fellow users was the
editor of the Habitat newspaper “The Weekly Rant”. This user tirelessly
spent 20-40 hours a week (free account) composing a 20, 30, 40 or even
50 page tabloid with containing the latest news, events, rumors, and even
fictional articles. This was no small feat, he had only the barbaric
Habitat paper editor, and no other tools. After he had composed the pages
of an issue, he would arrange them in several chests of drawers in The
Rant office and send me mail. | would publish it by running some Ghu
macros that would bind them into a newspaper and distribute it to the
news vendos, check the copy by hand for errors, and deliver a copy to the
office (in Habitat). This worked great, but took massive amounts of his
personal time. | began to automate the process further just as Habitat
operation changed hands. The new publisher didn’t publish on time,
delayed getting the tools ready to speed up creation, made editorial
changes (he wanted it to be shorter, less fiction), and didn't hand-deliver
a copy of the final product. The editor quit. Just like real life: Someone
new runs the show and the sensitive leave. Again, these people are rare
and should be handled carefully. The Rant will never be the same.

Duels:

One of the wands we implemented caused the victim to perform the
“jump” gesture, accompanied by a “Hah!” word balloon. It was fun for a
while, mostly because you could really effect another Avatar, but it got
old fast. Soon a game was developed completely by the users involving
these wands: The Duel. The rules were simple: two combatants, two
wands, one judge. When the judge says “go” the first to “hit” the other
with the wand 3 times wins. Not as easy as it sounds, since the duelists
are allowed to run around.

Tours:

Another Caretaker was the number #1 all-time most-traveled Avatar.
He also was the longest lived. When new people started logging in, he took
them on guided tours of this strange new world. He made them feel like
they had a “friend” in town.

Combat:

“Conflict is the essence of drama”. We used this quote in the initial
Habitat design document. Habitat (it was then named “Microcosm”) was to
have personal combat in the forms of weapons. Most computer games had
combat, and we were offering a chance for users to effect each other!

Here | will explain how it actually ended up working. There were
ranged weapons and hand-to-hand. An Avatar is born with 255 hit points
(the actual number is masked from the user, and a “general state of
health” message gives the user some idea how bad off he is.) While
holding the weapon, you select a target and DO (attack). There is a
telecommunications delay that may effect the hit-or-miss result. Each
successful attack does some small amount of damage (i.e. 20 pts.). You

are always informed when you are shot, as your Avatar is knocked onto his
rump.

As you can see, it would take quite a few hits to “kill” a healthy
Avatar. Not only that, but you can avoid being damaged if the attacker
can't “touch” you in 2 ways: 1) by turning into a ghost or 2) running around
(not standing still). You use #2 when you are in a gunfight where you are
shooting back. This seems to be a working dynamic. If you really, really
are low on hit points, you travel the “wild” regions as a ghost. There are
also devices that will restore your hit points. The real problem is
communicating this to new users, who are often standing around in a

region when a bandit comes along with a gun. The neophyte hears a “bang”
and sees his Avatar knocked on his can. Instead of acting, he types a
message like “What was that? Why am | sitting down?”. Meanwhile, El
Bandito cranks out another 12 bullets.... Dead newbie probably had all of
his money and stuff in his pocket too! This problem should be corrected in
the Avatar Handbook, explaining that guns are dangerous (something we
thought people would assume on their own).

For more on special types of combat see Issues:Magic Inflation,
Motivators in Action:Duels, and Events:Dungeon of Death.

The Scheduled events:

The D'nalsi Island Adventure:

The first treasure-hunt ever planned for Habitat was mine, the D’nalsi
Island Adventure. | took me hours to design, weeks to build (including a
100-region island), and days to coordinate the actors involved. | had taken
several guesses as to what how long it would take the players to perform
each “segment” of the quest. The mission: recover the lost “Amulet of
Salesh”. First: A trial, introducing the characters and the first clues.
Second: Salesh hires the adventurers. Third: The players needed to figure
out the “secret” teleport address. Fourth, they must find the door to the
hidden cave, solve the riddle. Last: find the hidden crawlway and the
buried chest containing the amulet. The prize was 25,000t.

The first part was in the form of a “dinner theater"-like play, set in
the county courthouse. It was heavily attended. Since it was set up as an
introduction, there was no appropriate “time” for the players to discover
anything.

On the day that Salesh “hired” adventurers to find his amulet, he gave
out copies of a map of the island. Hidden on this map was a word that was
the teleport address to the island. After about 15 minutes of hiring, when
about the 10th Avatar was hired, Salesh (me) received an ESP from one of
the Motivators: He had discovered the teleport address. Darn! It seemed
that the others had no idea where to start, so | sent ESP to all the players
announcing that the teleport address had been discovered to be a word on
the map.

Within 8 hours the treasure had been recovered by that person who had
1st discovered the island. This was so soon that almost half the
adventurers (the novices) had not yet even discovered the teleport

address! It was clear that there is a very wide range of “adventuring”
skills in the Habitat audience, and various events need to be better
targeted, and should include handicapping mechanisms so that those
behind don’t get more and more behind.

The Dungeon of Death: _

This “combat oriented” dungeon was the brainchild of a Caretaker that
had recently become a Q-Link in-house employee. It shows that
experienced “insider” could design an successful event using his
understanding gained thru being a player first. (Note: | had nothing to do
with this design, so it was my first event as a participant)

For weeks ads appeared in The Rant announcing that that Duo of Dread,
DEATH and THE SHADOW were challenging the adventurers to come to their
lair. Soon, on the outskirts of town, a dungeon was discovered. Outside a
sign read “Danger, enter at your own risk.”. Two operators were logged in
as DEATH and SHADOW, armed with guns that could kill in 1 shot (instead
of the usual 12). The dungeon had totally dark (light did not help), dead
end (trapped), and duplicate regions. It was clear that any explorer had
better be prepared to “die” several times before mastering the dungeon.
The rewards were pretty good: 1,000t minimum and access to a vending
machine that sold “teleport” wands (see lssues:Magic Inflation). | even
got a chance to play DEATH for one night. It was a slaughter. Avatars
were dropping like flies... but most of them had prepared by emptying
their pockets. When | got to play DEATH, | found him in one of the “dead
ends” with four other trapped Avatars. | deghosted and started shooting,
but was shot twice myself and died. Shoot! The last operator had not
healed damage from his last encounters! The worst part of this is that
“when you die, what is in your hands is dropped”. Yep. Some normal
Avatar now had the “elephant” gun that could kill in one shot. The most
valuable weapon in Habitat. What should | do? | later found out that this
was not the first time this happened, it happened to a Q-Link operator and
they “forced” the Avatar to give it back. | did something else: As DEATH
(never identifying my true self) | threatened to kill the new owner. She
replied that she would never leave town, thus being safe. OK, | think,
she's smart. After about an hour we settle on a deal, 10,000t to buy the
gun back. We meet at The Oracle in town, where it is safe and make the
exchange. It was great. The entire “operations accident” was handled
within the game universe with no “external” interference.

R&R weekend adventures:
These were short (1-2 hours) quests where a user pressed one of ten
magic buttons to receive a clue to find one of ten hidden keys to be used in

one of ten hidden safes. This were the all-around best quests to run
(there were 3 of them) because there were always 7-10 winners. The only
problem here was the Time Zone problem: The event had to be scheduled so
that as many people as possible could participate from the moment it
started. Q-Link access started at 6pm local time. This meant that for the
Californians to have a chance, the adventure would have to start at 9pm
East coast time at the earliest.

The Money Tree:

The Quest for the Money Tree is the first quest an Avatar learns about
from reading his free Welcome Wagon version of the Rant placed in his
Turf. There is a tree in a forest that will dispense 100t for every Avatar
once. Everyone can feel like they have “found” the magic tree.

The Tome of Wealth and Fame:

This was also one of the originally conceived of quests. A certain set
of tablets contained the Tome of Wealth and Fame. If you found it, you
were to hide it somewhere else. You would receive a reward based on how
long it took another to find it. The problem with this was that the world
was so large that it often took weeks for someone to find the tome. It
wasn’t an active process because, if you tried, it would take days of on-
line time to find.

The Long and Short of Quests:

A trend became clear about quests in Habitat. The winners of the “long
range” quests like The D’nalsi Island Adventure were almost always
people with free accounts. The freebies would stay on for hours on end to
gain wealth, things and status (See Habitat Money:“The Scam”. The
paying customers could only come on 1-2 hours/week. The idea that
people would be able to “work on” a quest for weeks is bogus. The long
range quest must be something that either “everyone” can win or does not
provide some significant advantage in the world. (See The Money Tree)

Grand Openings:

A real surprise was the popularity of the “Grand Opening”. This the
ribbon-cutting event when new regions were added to the world. Tokens
and prizes were often hidden in the new regions, but it seems that the
audience (especially the Passives) had an insatiable hunger to see new
places and things. The Grand Opening of the Popustop Arms apartment
building was the most heavily attended event of the Pilot test.

Disease:

One of the more successful “games” we invented for Habitat was the
disease. There are three strains currently defined: 1) Cooties, 2) Happy
Face, 3) Mutant (aka The Fly). We only were able to test Cooties with live
players, but it was a hit. It works like this: Several initial Avatars are
infected with a “Cootie” head. This head replaces the current one, and
cannot be removed except by touching another non-infected Avatar. Once
infected, you can not be infected again that day. In effect, this game is
“tag” and “keep away” at the same time. Often people would allow
themselves be infected just so he could infect “that special person that
they know would just hate it” Every time the disease was spread, there
was an announcement at least a week before, and for at least a week
afterward it was the subject of major discussions. One day that the
plague was spread, a female Avatar that was getting married got infected
1 hour before her wedding! Needless to say, she was very excited, and in a
panic until a friend offered to take it off her hands.

Some interesting variations to try on this are: Touch 2 people to cure;
this would cause quite a preponderance of infected people late in the day.
The “Happy Face” plague: This simple head has the side effect of changing
any talk message (word balloons) to come out as “HAVE A NICE DAY!... can
you imagine infecting some unsuspecting soul, and him saying back to you
HAVE A NICE DAY! ??? ESP and mail still work normally, so the user is not
without communications channels. The Mutant Plague: The head looks like
the head of a giant housefly and it has the effect of changing talk text to
“Bzzz zzzz zzzz”. We think these all will be great fun.

Deception & Trickery
These were fun things to do to your fellow Avatar.

My invention - Type this: “You have *mail* in your pocket.” and watch
the fun as people say “That's strange! | don't have maill”

Chip thought this up - Send this ESP message “ESP from:

yournamehere”, then quickly send a “Hello” also. Your “Hello” ESP will be
announced 3 times!

We developed a form of communication “harassment”. You can do this
on almost any network. Just coordinate a few people all sending very
short ESP messages the the victim. His screen will scroll faster than he

can read. This was used against the social outcast mentioned in Dial H for
Murder.

They could only do this by recruiting more and more new members (while
still keeping the orgamzatuon a secret!). Secret “handshakes” could be set
up. Meetings. Recruiting drives. Of course, soon there ‘would be gang
warfare. Who knows where it might go?

A Final Word:

As | close this document | find | keep remembering dozens of other
stories to tell. And all of these come from my experiences withh only 200
or so people! Imagine what it will be like with tens of thousands of
creative minds at work!. Though as_of this vyrutmg Habitat is still not a
released product | still. am proud of the world we created. | really expect
to be: meetmg you soon “On The Other Side” in a ‘world not unlike Habitat.

F. Randall Farmer
ak.a.. SPBLives

