
MCMURPHY'S MANSION
Written by David Martin
Crack Study

Tools used (Modern):
VICE
DirMaster
Visualize1541
G64Conv

Tools I would have used in 1986:
C64
Super Snapshot
Disector https://csdb.dk/release/?id=74829
The GCR Editor https://csdb.dk/release/?id=67858

Starting with a G64, a direct conversion to D64 produces a non-working copy. Inspection reveals that
after an initial load, the program settles in to normal disk access. At this point it is clear that there are
two paths to a working crack:
1. Simply snapshot the initially loaded data and bypass the custom loader entirely, or
2. Crack the custom loader.

I chose 2. because it’s more interesting. In the end, of course, after defeating the custom loader, the file
will be extracted anyway.

A look at the BAM shows some suspect tracks. Error 20, of course is “Header Not Found”, which is
clue #1 into what’s going on here. Looking at the sectors in question with a sector editor, they appear
to be empty or missing. Clearly these tracks have a non-standard format.

Modeling the disk with a forensics tool, it becomes clear that there is data on those tracks, but when
trying to graph it linearly using a sector index it is missing. This is clue #2.

Visualize-1541 Block Imaging

Visualize-1541 Disk Imaging

Visualize-1541 text output

track 12, offset 87914, size 7650,
speed 3
Warning: Extra sector 130
Warning: Extra sector 130
Warning: Extra sector 131
Warning: Extra sector 131
Warning: Extra sector 132
Warning: Extra sector 132
Warning: Extra sector 133
Warning: Extra sector 133
Warning: Extra sector 134
Warning: Extra sector 134
Warning: Extra sector 135
Warning: Extra sector 135
Warning: Extra sector 136
Warning: Extra sector 136
Warning: Extra sector 137
Warning: Extra sector 137
Warning: Extra sector 138
Warning: Extra sector 138
Warning: Extra sector 139
Warning: Extra sector 139
Warning: Extra sector 140
Warning: Extra sector 140
Warning: Extra sector 141
Warning: Extra sector 141
Warning: Extra sector 142
Warning: Extra sector 142
Warning: Extra sector 143
Warning: Extra sector 143
Warning: Extra sector 144
Warning: Extra sector 144
Warning: Extra sector 145
Warning: Extra sector 145
Warning: Extra sector 146
Warning: Extra sector 146
Warning: Extra sector 147
Warning: Extra sector 147
Warning: Extra sector 148
Warning: Extra sector 148
Warning: Extra sector 128
Warning: Extra sector 128
Warning: Extra sector 129
Warning: Extra sector 129

track 13, offset 95844, size 7649,
speed 3
Warning: Extra sector 133
Warning: Extra sector 133
Warning: Extra sector 134
Warning: Extra sector 134
Warning: Extra sector 135
Warning: Extra sector 135
Warning: Extra sector 136
Warning: Extra sector 136
Warning: Extra sector 137
Warning: Extra sector 137
Warning: Extra sector 138
Warning: Extra sector 138
Warning: Extra sector 139
Warning: Extra sector 139
Warning: Extra sector 140
Warning: Extra sector 140
Warning: Extra sector 141
Warning: Extra sector 141
Warning: Extra sector 142
Warning: Extra sector 142
Warning: Extra sector 143
Warning: Extra sector 143
Warning: Extra sector 144
Warning: Extra sector 144
Warning: Extra sector 145
Warning: Extra sector 145
Warning: Extra sector 146
Warning: Extra sector 146
Warning: Extra sector 147
Warning: Extra sector 147
Warning: Extra sector 148
Warning: Extra sector 148
Warning: Extra sector 128
Warning: Extra sector 128
Warning: Extra sector 129
Warning: Extra sector 129
Warning: Extra sector 130
Warning: Extra sector 130
Warning: Extra sector 131
Warning: Extra sector 131
Warning: Extra sector 132
Warning: Extra sector 132

track 14, offset 103774, size 7653,
speed 3
Warning: Extra sector 140
Warning: Extra sector 140
Warning: Extra sector 141
Warning: Extra sector 141
Warning: Extra sector 142
Warning: Extra sector 142
Warning: Extra sector 143
Warning: Extra sector 143
Warning: Extra sector 144
Warning: Extra sector 144
Warning: Extra sector 145
Warning: Extra sector 145
Warning: Extra sector 146
Warning: Extra sector 146
Warning: Extra sector 147
Warning: Extra sector 147
Warning: Extra sector 148
Warning: Extra sector 148
Warning: Extra sector 128
Warning: Extra sector 128
Warning: Extra sector 129
Warning: Extra sector 129
Warning: Extra sector 130
Warning: Extra sector 130
Warning: Extra sector 131
Warning: Extra sector 131
Warning: Extra sector 132
Warning: Extra sector 132
Warning: Extra sector 133
Warning: Extra sector 133
Warning: Extra sector 134
Warning: Extra sector 134
Warning: Extra sector 135
Warning: Extra sector 135
Warning: Extra sector 136
Warning: Extra sector 136
Warning: Extra sector 137
Warning: Extra sector 137
Warning: Extra sector 138
Warning: Extra sector 138
Warning: Extra sector 139
Warning: Extra sector 139

So enough of the forensics, let’s have a look at what’s actually going on.
The disk loads an initial BASIC stub. This stub loads and displays two koala pics with an asm routine
up at $c002 for copying the screen/color data in, nothing much to see there. It finishes with a
load”main”,8,1. It is completely possible to boot this game by simply loading “main”.

A look at main itself reveals that even though it is 114 blocks on the disk, it only loads two blocks 18/2
and 18/12. Looking at the raw sector data for these:

There’s an interesting message in
here about the copy protection – I’d
assume this was one of these
protection kits that was available
from the back of computer
magazines in the 1980s.

 If you wondered where the drive-
side code block itself comes from
(not the initial stub, but the custom
loader itself), it can be found at
18/18

C64-side of loader code

*=$0102
ldy #$00
jsr EXECUTE_DRIVE_CODE
sei
ldx #$00

L10a
ldy #$27
sty $dd00
txa
lsr a
rol $fe
lsr a
php
lsr a
rol $fe
plp
rol $fe
lsr a
rol $fe
lsr a
rol $fe
lsr a
php
lsr a
rol $fe
plp
rol $fe
lsr a
rol $fe
lda $fe
sta $ce00,x
inx
bne L10a

L134
ldy #$00

L136
bit $dd00
bvc $0136

L13b
lda $d012
and #$07
cmp #$02
beq L13b

lda #$07
sta $dd00
ldx #$27
nop
eor ($02,x)
nop
lda $dd00
lsr a
lsr a
nop
eor $dd00
lsr a
lsr a
nop
eor $dd00
lsr a
lsr a
nop
eor $dd00
stx $dd00
eor #$f9
tax
lda $ce00,x
sta $cf00,y

iny
bne L13b
ldx #$01

L176 = *+1
lda #$00
bne L188
dec L176
lda $cf02
sta $2d
lda $cf03
sta $2e
ldx #$03
inx
lda $cf00,x
ldy #$00
sta ($2d),y
inc $2d
bne L196

inc $2e
L196

cpx $cf01
bcc L188

lda $cf00
bne L134

ldx #$f6
txs
cli
jmp $0819

*=$0202
lda $ba
jsr $ffb1
lda #$ff
jsr $ff93

L20c
lda COMMAND_DATA,y
jsr $ffa8
iny
cmp #$0d
bne L20c
jmp $ffae

*=$021a
COMMAND_DATA

.text "M-E"

.byte $a8,$07,$0d

1541-side of loader code
BUFFER_0_COMMAND_STATUS = $00
BUFFER_1_COMMAND_STATUS = $01
BUFFER_2_COMMAND_STATUS = $02
BUFFER_3_COMMAND_STATUS = $03
BUFFER_4_COMMAND_STATUS = $04
BUFFER_0_TRACK = $06
BUFFER_1_TRACK = $08
BUFFER_2_TRACK = $0a
BUFFER_3_TRACK = $0c
BUFFER_4_TRACK = $0e
BUFFER_0_SECTOR = $07
BUFFER_1_SECTOR = $09
BUFFER_2_SECTOR = $0b
BUFFER_3_SECTOR = $0d
BUFFER_4_SECTOR = $0f
UNIT_0_CURRENT_TRACK = $22
CURRENT_BUFFER_PTR = $30
CURRENT_BUFFER_LO = $30
CURRENT_BUFFER_HI = $31
BUFFER_0_RAM = $0300
BUFFER_1_RAM = $0400
BUFFER_2_RAM = $0500
BUFFER_3_RAM = $0600
BUFFER_4_RAM = $0700
SERIAL_BUS = $1800
DISK_DATA_IN = $1C01
INITIALIZE_COMMAND = $d005
FIND_DATA_BLOCK_START = $f50a
DECODE_69_GCR_BYTES = $f8e0
CONTROLLER_ERROR = $f969
 *=$0400
START
 lda #$03
 sta CURRENT_BUFFER_HI
 lda UNIT_0_CURRENT_TRACK
 cmp BUFFER_1_TRACK
 bne ERROR_ROUTINE
 jsr FIND_DATA_BLOCK_START
READ_WAIT_0
 bvc READ_WAIT_0
 clv
 lda DISK_DATA_IN
 sta (CURRENT_BUFFER_PTR),y
 iny
 bne $040d
 ldy #$ba

READ_WAIT_1
 bvc READ_WAIT_1
 clv
 lda DISK_DATA_IN
 sta $0100,y
 iny
 bne READ_WAIT_1
 jsr DECODE_69_GCR_BYTES
 lda BUFFER_0_RAM+$01
 sta BUFFER_1_SECTOR
 lda BUFFER_0_RAM
 sta BUFFER_1_TRACK
 beq WRITE_TO_C64_LOOP
 lda #$ff
 sta $0301
;Now send to the c64
WRITE_TO_C64_LOOP
RAM_READ_SOURCE = *+1
 lda BUFFER_0_RAM
 sta $14
 lsr a
 lsr a
 lsr a
 lsr a
 tax
 lda #$01
 sta SERIAL_BUS
SERIAL_WRITE_WAIT
 bit SERIAL_BUS
 bne SERIAL_WRITE_WAIT
 stx SERIAL_BUS
 txa
 asl a
 and #$0f
 sta SERIAL_BUS
 lda $0014
 and #$0f
 sta SERIAL_BUS

 asl a
 and #$0f
 nop
 sta SERIAL_BUS
 inc RAM_READ_SOURCE
 bne WRITE_TO_C64_LOOP
;do some finalization dance
 lda #$0c
 sta SERIAL_BUS
 lda $08
 bne START
 lda #$00
 sta SERIAL_BUS
 lda #$01
 bne ERROR_OUT
ERROR_ROUTINE
 lda #$00
ERROR_OUT
 jmp CONTROLLER_ERROR

NEXT_READ
 lda #$e0
 sta BUFFER_1_COMMAND_STATUS
BUFFER_1_CMD_WAIT
 lda BUFFER_1_COMMAND_STATUS
 bmi BUFFER_1_CMD_WAIT
 beq NEXT_READ
 jmp INITIALIZE_COMMAND

Initially-invoked drive-side stub
*=$07a8
LDA #$0C
STA $1800
LDA #$0F
STA $08
LDA #$02

STA $09
LDA #$12
STA $0A
STA $0B
LDA #$80
STA $02

READYWAIT
LDA $02
BMI READYWAIT

LDY #$00
COPYLOOP

LDA $0500,Y
STA $0400,Y
INY
BNE COPYLOOP
JMP $0483

In case you were wondering where the stub at $07a8 came from – it’s embedded in the BAM sector.
When you load a file, the contents of the BAM sector wind up in buffer 4 ($0700) so you can embed
code in that sector and invoke it. This is a not uncommon trick from that era that allows the drive-side
protection routines to be started with just a M-E.

So, stepping through the code on the drive side, there’s nothing really special about this loader –
they’re teeing up a HEADER READ from 15/02 on buffer 1, teeing up a DATA READ from 18/18 on
buffer 2, invoking the read on buffer 2, copying it down to $0400. When it jumps in to $483, it
performs the header read and executes the code at $0400 which reads in the sector and spools it to the
C64. So what gives? There’s nothing special about this. It’s not decrypting anything, there doesn’t
seem to be any special extra signaling going on, it’s using the drive’s ROM routines, so what’s the
special format? Following the sector link chain from 15/02 forward we eventually fetch up on this:
Hmm. I don’t recall there being a sector 80 on a normal track.

Looking at the flux graphs from our initial investigation it’s clear they’re not using a weird sync setup
to have way more sectors than you’d expect or anything of that sort, the track looks normally formatted
from that perspective. This is clue #3. At this point I suspect that they’ve simply modified the sector
headers to have oddball sector numbers. That would explain why most D64 tools show this area as
empty while the flux analysis shows it as a “normal” looking area. The D64 tools are rigidly indexed
and expecting normal sector numbering. Dumping the g64 with nibconv confirms this:

NIBCONV track 12 data
track 12
 speed 3
 begin-at 5
 sync 43
 ; header
 gcr 08
 begin-checksum
 checksum 8c
 ; sector
 gcr 82
 ; track
 gcr 0c
 ; id2
 gcr 30
 ; id1
 gcr 32
 end-checksum
 gcr 0f
 gcr 0f
 ; Trk 12 Sec 130
 bytes 55 55 55 55 55 55 55 55 7f
 bits 11
 sync 38
 ; data
 gcr 07
 begin-checksum
 gcr 0c 8c 04 e2 04 89 11 89 0b 8a 00 e2 04 80 d0 db 4c 80 d0 db 92 aa 8a 02 2b c7 2b 81 82 a2 04
8a 00 2a 06 89 0b a0 08 81 2b 06 89 12 80 a2 04 8a 00 2a 06 4f 05 81 d0 db 90 db 81 2b 4f 18 90 f7 81
01 d0 f7 89 12 80 8a 00 e2 04 00 99 41 24 3a 80 d0 db 4c 80 d0 db 92 aa 8a 02 2b 38 2b 81 82 a2 04 8a
00 2a 06 89 0b a0 08 81 2b 06 89 12 84 a2 04 8a 00 2a 06 4f 05 81 d0 db 90 db 81 2b 4f 18 81 84 89 12
84 a2 04 e2 04 89 12 84 8a 00 e2 04 00 99 41 24 3a 4c 92 aa 8a 02 2b 5d 2b 90 56 89 0d 2b 06 89 0d 89
0b a2 04 8a 00 2b 06 4f 1d 00 99 22 d4 48 45 53 45 20 57 4f 4e 27 54 20 48 45 4c 50 20 59 4f 55 21 22
3a 4c 80 d0 db 92 aa 8a 02 2b c7 2b 89 0d 80 a2 04 8a 00 2a 06 4f 12 90 f7 81 01 d0 f7 89 0d 80 8a 00
e2 04 81 d0 db 90 db 81 2b 4f 0b 00 99 41 24 3a 80 d0 db 4c 80
 checksum 1f
 end-checksum
 gcr 00
 bits 0101001000
 bytes a9 55 55 55 7f
 bits 11

As you can see, all they’ve done here is customize the sector headers to have goofy sector numbers.
Any copier based on normal disk geometry would fail to copy this disk.

So, how to crack? Simple – first make a chart of which “fake” sector numbers correspond to which
“real” sector numbers. For this I used nibconv and modified the resulting text file. This gave me this
mapping:

Converting that back to a G64, I was then able to see sector data in DirMaster, and correct the T/S links
using these tables.

FINALLY, to extract the real main file, I changed the T/S link in its directory entry to point to 15/2
where its sector chain begins.

At this point you have a working copy that can be directly converted to D64 and copied through any
T/S based copier.

