
Ships Ahoy
Unicorn © 1983 for Commodore 64
Cracked by Mr.Mouse/XeNTaX/Genesis Project
Released November 17, 2024 by Genesis Project
Copy protection report

1. Disk content:

2. Copy protection summary

- Expects a checksum error of Track 1 Sector 1
- Expects a correct checksum of Track 1 Sector 2
- Checks correct memory operation
- Localizes (in terms of memory offset) itself before operation

3. Crack changes

The game is part basic, part machine code. Basic source as well as machine code sources changed to
allow the following:
- Title pictures, game title pictures each unified into one file
- Title pictures and main cracked game in one file
- Main game menu newly build in machine code and resident in main file
- Fast-loader installed
- Individual source files per sub game compressed and all fo them resident in main file, unpacked
when needed
- Loading only needed for sub games and sub game title pictures
- Original game took 520 blocks (133.120 bytes), cracked game takes 194 blocks (49.664 bytes), only
37% of original size

4. Copy protection source code and comments

; Ship Ahoy by Unicorn Software 1983
; Copy-protection - filename "START"
; Crack by Mr.Mouse, October 2024
; ----------------------------------
; Protection steps:
;
; - Unicorn file loads "START"
; - Unicorn file runs it using sys 52224+16+7
;
; - Code at cc17:
; - Entry point at $cc17 has a jump to cbe0
;
; - Code at cbe0:
; > replace jmp at cc17 with jsr $ffe7 (kernal for close all channels and
; files); this will now be the loader start address when called from basic
; > jsr to the code at cd00 that checks if sector 1, track 1 has a checksum
; error
; > if yes, the program will return here and a jump to cc17 will be taken
;
; - Code at cc17:
; > Will load "START2" basic file
; > Will ensure 0843/0844 is pointing to $0849
; > Will then set command buffer at 0277 to "run" + cr
; > Sets keyboard buffer length to 4
; > Finds end of loaded basic file "START2" and sets $2d/$2e, $2f/$30 and
; $31/$32 to this to set basic pointers
; > Executes basic warms start via vector at 0300 -> $e38b
;
; - Code at cd00 (Copy-protection):
; > Sets 7fff to RTS ($60), JSRs there, upon return sets x to stack pointer,
; gets the hi byte of the current page ($cd)
; > Modifies 7 places in the code to $cd, to localize the code to where it was
; loaded (and perhaps part of first protection)
; > Some sort of memory check at $9000: loads y with whatever is there,
; increases y, stores that at $9000 again and then compares y with $9000.
; If not same it will crash.
; > Will then proceed to check two sectors on track 1. Sector 2 and sector 1.
; Sector 2 should give no error (or else crash), sector 1 should have
; checksum error (or else crash)
; > If that is all correct, resets the drive and returns with the address
; $cdee in A/Y
; > Upon failure the program will fill cd3b downward to 0000 with $cd
;
; - START2 will load title pictures, show them, play some music, and then reload
; "START" to do another copy protection check.
; But will modify the file to load to MENU and adjust the size of the filename
; string to 4, before running it
;
; - After that, the routine at cc17 will be used to load new basic games from
; the menu (without further Copy-protection checks), but other files are also
; loaded via the basic programs.

* = $cbe0
;-----------------------jumped to from cc17
lcbe0 lda #$20 ; replace jmp $cbe0 into jsr $ffe7 --> close all channels and files

ldy #$e7
ldx #$ff
sta lcc17
sty $cc18
stx $cc19
jsr lcd00 ; check the error track existence, return with a = ee and y = cd

(cdee)
jmp lcc17 ; jump down again

;----------------------------
ldx #$04

lcc02 lda $cc8c,x
cmp $03f4,x
bne lcc10
dex
bpl lcc02
jmp lcc17

lcc10 lda #$35
sta $01
jmp $a000

;-----------------------;start (sys from UNICORN)
lcc17 jmp lcbe0 ; this will be replaced above by jsr $ffe7 --> close all channels
and files

lda #$01 ; open channel 1, device 8

ldx #$08
ldy #$01
jsr $ffba ; open
lda #$06 ; set filename to "START2"
ldx #$8c
ldy #$cc
jsr $ffbd ; set fn
lda #$00 ;
jsr $ffd5 ; load the file
lda #$49 ; set 0843/0844 to 0849
sta $0843
lda #$08
sta $0844
jsr $ffe7 ; close all channels and files
ldx #$03 ; "type" run in command buffer

lcc40 lda $cc88,x
sta $0277,x
dex
bpl lcc40
lda #$04 ; set accu to 4
sta $c6 ; store at c6 --> Length of keyboard buffer to 4
lda #$00 ; set fb/fc to $0800
sta $fb
lda #$08
sta $fc

lcc55 ldy #$00 ; or stuff: 00, with 43, with 08 --> 4b etc. all the way until the
end of the (basic) file

lda ($fb),y
iny
ora ($fb),y
iny
ora ($fb),y
beq lcc6a ; there are 3 0's at the end of a basic file. when this routine hits

those, then the end of the file was found, needed to set variables below
inc $fb
bne lcc55
inc $fc
jmp lcc55

lcc6a lda $fb ; load the lo byte (a5)
clc
adc #$03 ; add 3 more (to get to real end of the file, oda8)
sta $fb
bcc lcc75
inc $fc

lcc75 lda $fb ; set pointer to beginning of variable area and pointer to beginning
of array variable area.

sta $2d
sta $2f
sta $31 ; Pointer to end of array variable area, all to $0da8
lda $fc
sta $2e
sta $30
sta $32
jmp ($0300) ; Execution address of warm reset, displaying optional BASIC error

message and entering BASIC idle loop. Default: $E38B.
;-----------------------; "RUN"

??? ;%01010010 'r'
eor $4e,x

;-----------------------;"START2" or other filename to load
ora $5453

eor ($52,x)
??? ;%01010100 't'
??? ;%00110010 '2'
brk
asl a
jsr $ffe7
lda #$35
sta $01
jmp ($f1ff)
jsr $ffe7

;---------------------------------------
lcd00 lda #$60 ; set 7fff to RTS

sta $7fff
jsr $7fff ; jsr there (and back)
tsx ; store current stack pointer to x
lda $0100,x ; load that pointer ($cd) there
sta $fc ; and make fb/fc a pointer to $cd00
ldx #$00
stx $fb
ldy #$56 ; set y to $56
sta ($fb),y ; set $cd56 to $cd
ldy #$6b
sta ($fb),y ; set $cd6b to $cd
ldy #$7d
sta ($fb),y ; set $cd7d to $cd
ldy #$82
sta ($fb),y ; set $cd82 to $cd
ldy #$85
sta ($fb),y ; set $cd85 to $cd
ldy #$9c
sta ($fb),y ; set $cd9c to $cd
ldy #$b9

sta ($fb),y ; set $cdb9 to $cd
ldy $9000 ; get y from $9000
iny ; y=y+1
sty $9000 ; store y at $9000
cpy $9000 ; compare y with $9000
beq lcd49 ; if the same then go on down

lcd3a ldy #$3b ; set cd3b downward to 0000 to cd
lcd3c sta ($fb),y

dey
bne lcd3c
dec $fc
bne lcd3c
dec $fc
bne lcd3c

lcd49 jsr $ff90 ; control kernal messages
lda #$00
jsr $ffcc ; close input and output channels
lda #$03 ; set the filename --> 3 bytes --> "I/O"
ldx $dd ; get it from $cddd
ldy #$65 ; will change to $cd by top -> cddd
jsr $ffbd ; set filename to "I/O"
lda #$0f ; command port
ldx #$08 ; device
ldy #$0f ; command 15
jsr $ffba ; set logical, first and second addresses
jsr $ffc0 ; open the file
lda #$01 ; new filename -> 1 byte "#"
ldx #$dc
ldy #$65 ; will change to $cd by top -> cddc
jsr $ffbd ; set filename/byte out to 1541 to "#"
lda #$03 ; logical, first and second to 3, 8 and 3
ldx #$08 ; device 8
ldy #$03
jsr $ffba ; send to 1541
jsr $ffc0 ; open the file
jsr $65b0 ; will change to $cd by top -> cdb0 -> jsr $cdb0 --> Try to load

track 1, sector 2. This should give an error
bne lcd3a ; if this anything other than 0 then crash
dec $65eb ; this will change to $cdeb and lower than ("2" to "1") sector 2 to

sector 1
jsr $65b0 ; this will change to $cdb0
beq lcd3a ; we should get an error on this track (23: "Checksum error in

data"),if not we crash
jsr $ffcc ; close input and output channels
ldx #$0f ; open channel for output
jsr $ffc9
lda #$49 ; send "I" , which is a "reset drive"
jsr $ffd2
lda #$0d
jsr $ffd2
jsr $65c2 ; will change to $cdc2 - ensure reset was done
lda #$0f ; close logical file f
jsr $ffc3
lda #$03 ; close logical file 3
jsr $ffc3
jsr $ff8a ; restore default I/O vectors
lda #$ee ; set accu to ee
ldy $fc ; load y with $cd --> cdee
bne lcdf3 ; auto-jump o cdf3 -> and return

;-----------------------; Try to load track 1, sector at cdeb (starts off as "2", then is
lowered to "1". This should give no error on sector 2, but an error on sector 1)

ldx #$0f ; open channel for output
jsr $ffc9
ldy #$00 ; prepare to send "U1:3 0 01 02"

lcdb7 lda $65e0,y ; will change to cde0 --> "U1:3 0 01 02" (null-terminated string,
with CR at the end before 0)

beq lcdc2 ; if 0 then end reached , go on down
jsr $ffd2 ; send byte to 1541
iny
bne lcdb7 ; keep doing it until 0 in string reached

lcdc2 jsr $ffcc ; close input and output channels. The command sent will try to load
sector 2 at track 1 to buffer 3

ldx #$0f ; open channel for input
jsr $ffc6
jsr $ffcf ; input character from channel
and #$0f ; isolate lo nibble
pha ; push it

lcdd0 jsr $ffcf ; input character from channel
cmp #$0d ; wait until CR gotten
bne lcdd0 ; not yet CR? Get another character
jsr $ffcc ; close input and output channels
pla ; pull error message
rts ; return
??? ;%00100011 '#'

;--------------------------------
eor #$2f ; "I/O"
??? ;%01001111 'o'
eor $31,x
??? ;%00111010 ':'
??? ;%00110011 '3'
jsr $2030
bmi $ce1a
jsr $3230

;-----------------------;
lda #$ff
sta $91
rts

;-----------------------;
lcdf3 rts

nop
sta $0328
sty $0329
cli
nop
nop
rts
nop

